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Abstract

A new derivation of an algorithm which fuses the outputs of two

Kalman filters is presented within the context of previous research in

this field. Unlike works from different authors, this derivation clearly

shows the combination of estimates to be optimal, minimizing the

trace of the fused covariance matrix. The algorithm assumes that the

filters use identical models, and are stable and operating optimally

with respect to their own local measurements. Evidence is presented

which indicates that the error ellipsoid derived from the covariance

of the optimally fused estimate is contained within the intersections

of the error ellipsoids of the two filters being fused. Modifications

which reduce the algorithm's data transmission requirements are also

presented, including a scalar gain approximation, a cross-covariance

update formula which employs only the two contributing filters' auto-

covariances, and a form of the algorithm which can be used to reini-
tialize the two Kalman filters. A sufficient condition for using the

optimally fused estimates to periodically reinitialize the Kalman ill-

ters in this fashion is presented and proved as a theorem. When these

results are applied to an optimal spacecraft rendezvous problem, sim-

ulated performance results indicate that the use of optimally fused

data leads to significantly improved robustness to initial target vehi-

cle state errors. Two other applications of estimate fusion methods

to spacecraft rendezvous are also described: state vector differencing,

and redundancy management.
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Summary

Data fusion is a broad heading describing techniques for combining the information from various sensors. In

traditional spacecraft on-board navigation systems, data fusion is accomplished with a Kalman filter. A basic

assumption of the Kalman filter is that the noise associated with the signal from any one of the various sensors
is uncorrelated from one time instant to the next, i.e. that the noise is "white." Modern sensor systems, such

as a Global Positioning System (GPS) receiver/processor or an integrated Inertial Navigation System / Global

Positioning System (INS/GPS), perform significant manipulation of their input, or measurement, data such that
the noise associated with their outputs, or states, cannot be viewed as white. Therefore, a Kalman filter cannot

be successfully used to fuse the data from such systems without some sort of ad hoc work-around procedure.

Various authors have proposed solutions to this problem in various contexts. A solution minimizing the

computation and data transmisssion requirements for a generic distributed network of linear quadratic estimators

and controllors was proposed by Speyer [2] in 1979. During the eighties, Bar-Shalom and several colleagues

presented results pertaining to data fusion in a multitarget, multisensor environment reminiscent of fire-control
applications [5], [6], [7]. More recently, Carlson has proposed a federated filtering approach [24]. Other studies
in this field have also been presented, and are discussed further in the sequel. In this report, a solution to the

problem of fusing two Kalman filters operating in parallel is presented in the context of spacecraft navigation.

In the approach presented here, the outputs, or state estimates, of the two filters are combined using weight8
based on the filters' covariance matrices as well as the cro_-covariance accounting for any correlation between

the filters. These covariances account for the nonwhite nature of the noise associated with the filters' estimates.

The approach taken here has been called estimate fusion by the present author to distinguish it from other
solution methods to the data fusion problem.

In estimate fusion, only the states common to both filters are fused. However, correlations between these

states and states unique to each filter are estimated and can be fed back to the filters in a periodic reinitialization

procedure. Although computing the optimal weighting matrices for estimate fusion requires a matrix inversion

(which can be time consuming for real-time flight software systenm), the fact that only common states are fused
means that the dimension of the matrix to be inverted is limited to the dimension of the common states. For

typical spacecraft navigation systems, the only common states are position and velocity so, typically, a 6x6
inverse will be required. With modern flight computers, computing this inverse is not an obstacle since the

estimate fusion should typically be scheduled at a slower rate than the filters' execution, and could possibly

even be run as a background job. Alternatives for further reductions in computational requirements, including

a scalar gain formulation, are presented in this report, although typically a sacrifice in performance is exacted

for these suboptimal alternatives. No other significant issues amociated with using estimate fusion in real-time

systems are known to this author.

This report is based on work I did while attending the University of Texas at Austin (U.T.) on a JSC

Graduate Fellowship during the 1991-92 academic year, and on subsequent work performed during a leave

without pay for the 1992-93 academic year. The body of the report contains my thesis, which fulfilled part of

the requirements for the Master's degree I received from U.T. in December of 1992. In the thesis, the problem of

fusing two optimally functioning, stable filters, which have identscal s_ates but different measurements, is solved.

Suboptimal alternatives are derived with the consequences of their use explored, and a spacecraft rendezvous
scenario is studied. The estimate fusion technique is found to combine, in a complementary way, the accuracies

of a filter with relative state measurements and a filter with inertial state measurements. These results have

obvious implications for the Space Shuttle since a GPS filter will be functioning alongside the existing rendezvous

filter during rendezvous missions in the near future. Note that some minor typographical errors which appeared

in the original work have been corrected.
In addition to a revised version of my thesis, two appendices are included, each containing a technical paper

which I prepared with assistance from my thesis advisor, Dr. Robert H. Bishop. Appendix A contains a



paperwhichwaspresentedat thet993AmericanInstituteof AeronauticsandAstronauticsIAIAAI Guidance.
Navigation,andControl(GNC)Conference1993heldin Augustof t993in Monterey, California. This paper

summarizes the thesis and presents a few new results. Appendix B contains a paper which Dr. Bishop and l
will present at the 1994 AIAA GNC Conference. This paper addresses the problem of fusing two filters with

noncommon stales, which is by far the typical situation. Also addressed is the problem of what the rate of
reinitialization of the filters with the fused estimates should be if it is desired to reinitialize the filters. This

paper forms the foundation for our ongoing research in this area.



Section I

Introduction

An area of increasinginterestinsystems researchisthat of combining data from a distributednetwork of local

sensorsand/or estimatorsinto a globalestimate which combines the informationavailableto each system in a

complementary fashion.Such techniqueshave a wide range ofapplications,includingdistributedprocesscontrol,

firecontrol,remote sensing,and managing data from redundant systems. Another interestindata fusionresearch

ismotivated by the proliferationof black-boxnavigationsystems such as mo6t Global PositioningSystem (GPS)

receivers.A desireof contemporary spacecraftdesignersisto combine such off-the-shelfsystems ina distributed

architecturein such a way that the measurement availabilityand geometry of the varioussystems complement

one another in some optimal fashion. Typically,modificationof the outputs of these systems to meet data

fusionrequirements isnot a cost-effectiveoption,so the desireexiststo combine the availableinformation into

a globallyoptimal estimate,which may then be used toresetthe localprocessors.In thisway, modificationsare

made outsidethe existingsystem ratherthan inside.Such a scenarioisthe focusof the presentwork.

First,new algorithms to perform the fusionfunction are developed and relatedto previous work. Thee

algorithmsare then illustratedthrough the use ofa simple example. Finally,a system which optimally combines

the stateestimatesoftwo Kalman filterson board a lunarorbitingspacecraftisconsidered.The spacecraftstate

estimates achieved using the fusionresetmethod are used to facilitatea rendezvous mission with another lunar

orbiter.Through itsapplicationto thissimulated lunar rendezvous mission,the ei_cacyof the estimate fusion

technique isevaluated.

1.1 Review of Approaches to Data Fusion

Severalapproaches to the problem of data fusionare possible,and many have been considered inthe literature.
The most basicform of data fusionoccurs inthe globallyoptimal Kalman filter,which optimally combines raw

measurement data from varioussources.A basicassumption, however, isthat the measurements are time-wise

uncorrelated. Ifrather than raw measurements itisdesiredto optimally combine the estimates from several

Kalman filters,the zero autocorrelationassumption willbe violated.This problem has been referredto as filter

cascading. Estimate fusion,as presented here,representsa solutionto thisproblem. Other possibilitiesexist,
such as the case in which some data sourcesare raw measurements and others are the outputs of estimation

schemes. This classof data fusionhas been classifiedas hybrid fusion.As mentioned previously,the present

work isprimarilyconcerned with a form ofestimate fusioninwhich the estimatesfrom two Kalman filtersare

combined to form an optimally fused estimate which isthen used to resetthesetwo filters.Some work of past

researchersin thisfieldwillbe reviewed to shed more lighton thesevariousapproaches. While thisreview isby

no means exhaustive,itattempts to considermany ofthe most significantworks in the area.

One of the earliestresearchesintoestimate fusionwas that of Willner,et al. [I].In thiswork, the authors

considered a problem they referredto as estimate compression. They showed how to calculatea weighted least

squares globalestimate using an arbitrarynumber ofestimates from localprocessorsas data. A restrictionon
thiswork was that allestimates had to be expressed in the same coordinate frame. This work requiresthe

calculationof IN × (.V - I)]/2cross-covariancematrices of order n x n, where N isthe number of estimates

being combined, and n isthe statedimension of each. In addition,thismethod alsorequiresthe calculationof

the inverseof an nN x nN covariancematrix that corresponds to a statevectorwhich containsallof the local

statevectors.

Later,a significantcontributionwas made by Speyer 12]in hissolutionto the discreteand continuous forms of

the decentralizedlinearquadraticGaussian controlproblem. [nthiswork, the authorminimized the requirements
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For data transmission between nodes in a decentralized network. Each node is required only to transmit to its

neighbors a data vector, which has only the dimension of the control vector (if only the estimation problem is

being solved, then a data vector having the same dimension as the state vector is transmitted). This method

offered significant advantages over the work mentioned previously, because here the computations were divided
among each of the local processors. The penalty for the reduced transmission requirements are the additional

ralculations required to generate the data vector. An assumption of this work was that identical models were

assumed for each of the local processors.

The assumption of identical local models was addressed in the work of Willsky, et al. [3]. These researchers
generalized the work of Speyer by giving necessary and sufficient conditions for estimating a global state from
local estimates of arbitrary dimension expressed in arbitrary coordinate frames, in essence, this condition stated

that any assumptions about relationships in the linear mapping of the states onto the measurements in the local

models must be preserved in the global model. A result is that this "condition does not require that there be

any physical relationship between the local states...and the global state .... " In addition to this general case. the
authors examined subcasea in which the local models are identical to and subsets of the global model. They also

examined the smoothing problem.

Willsky, et al. predicted that their work could be simplified. One such simplification can be found in the

work of Alouani and Birdwell [4]. These authors applied their solution to the nonlinear estimation problem to

the linear data fusion problem and gave two theorems for its solution. The first is a theorem for updating the

conditional densities of a system of arbitrary estimators. This theorem applied to Gauss-Markov processes leads

to a second theorem which gives an algorithm for updating the mean and covariance of the global state estimate.

The works above consider the problem of fusing an arbitrary number of estimates from local processors

into a centralized global estimate. A related problem is whether or not two estimates which are to be combined

actually originate from the same tracked object. This problem is known as data association and has been studied

extensively by Bar-Shalam and others [5], [6], [7]. Data association requires testing the hypothesis that, within
some tolerance level, two estimate tracks originate from the same target. Testing thin hypothesis requires explleit

use of the cross-covariance between the estimates, which are only used implicitly in Willner, et al. [1], Speyer

[2], Willsky, et al. [3], and Alouani and Birdwell [4]. Bar-Shalom gives a dynamic algorithm for calculating the
cross-covariance [5] and develops an estimate fusion algorithm which explicitly contains the cro_-covariance [6].

Bar-Shalom's cross-covariance algorithm is derived by analogy to the minimum variance estimator. These ideas

are tied together with the hypothesis testing algorithm in his book [7]. An important assumption made in his

work is that the estimates being fused use identical models.

A modification of the algorithm given by Bar-Shalom appears in a work by Blackman [8]. This approach is

a hybrid version of data fusion where one track is assumed to be generated by directly processing measurement
data in the manner of a Kalman filter. The track which is to be fused with thin track consists of estimates

output from a sensor which has done its own processing of its raw observations. Thus, inputs to the data fusion

algorithm are both raw measurements and proce_ed estimates.

Another result similar to the algorithm derived by Bar-Shalom was independently developed by Bishop [9]

using an optimization-based approach. The objective of thiJ work is an optimal combination of the estimates

from two Kalman filters which use identical models and are stable and operating optimally with respect to their

local measurement sets. Bishop also proposes to reset each of the Kalman filters with the estimate achieved

through this optimal combination. This derivation forms the starting point for the work in this thesis and will
be covered in extensive detail in the sequel.

1.2 The Utility of Estimate Fusion in a Rendezvous Problem

The rendezvous navigation problem was chosen as an illustration of the efficacy of estimate fusion because it

typically is performed using only measurements of the relative state of the two vehicles concerned. While this

is of primary importance for the rendezvous targeting guidance algorithms, the absence of accurate inertial
information can lead to problems [10]. Since most spacecraft also carry an inertial navigation system, a scheme

for producing optimal combinations of the relative state and inertial state estimators would be a desirable
achievement.
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Section 2

Fusion of Estimators Using Identical Models

This section presents the algorithm used for estimate fusion in this work, demonstrating the basic features of the

algorithm, including the equivalence of the optimal fused state vector to a global estimator and the role played in

estimate fusion by the cross-covariance between the two estimators. Several extensions to the algorithm are also

discussed, including an alternate update formula for the cross-eovariance and a suboptimal form of the fusion

gain.

2.1 Derivation of the Optimal Combination

The derivation of the optimal fusion algorithm is based on a cost function defined as the trace of the covatiance
associated with the fused estimate. This approach, derived originally by Bishop in reference [9], appears to be

unique in the literature.
To combine the estimates from two filters in some optimal fashion, a form for the optimal posterior estimate

of the global state is assumed:
iov, = (I - w)it + wi2, (2.1)

where "' denotes an estimate, and it and i2 are state estimates from the individual filters. The fusion gain

matrix, W, is to be determined. The a poster*on estimation error is defined as

ei = x - _ i = 1, 2, opt . (2.2)

From eq. 2.1 and eq. 2.2 , it follows that

The state error covariance matrix for the optimal combination is defined to be

(2.3)

(2.4)

Computing Popt in eq. 2.4 using 6opt in eq. 2.3 yields

A,, = P_- (P, - &2)w r - w(Pt -/zrn) (2s)

+w( A + P2- &2 - Rr_)wr,

where /51 = E[6 k filT], P2 = Ere2 fiT], and /_,2 = Eiel _T].
In eq. 2.5 , R12 iA the a posterior* cro_-covariance matrix. Note that since both individual estimators are

Kalman filters, we have the state update equation

fti = fti + K,(yi - H, fti), i = 1,2

where '-' denotes estimates prior to the filter updates and Yi = Hix +" i; hence,

fq = _, + K,H,(x, - i,) + K,e i, i=1,2

The estimation errors are given by

i=1,2

11
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where _,
A

=x-_,.i= 1.2. Thus.

E[{_ - I<_H_ - A'tc t }{_. - A'2hr2_2 - K_.t _}r]

E[(I- A'_HL)_,_[(I - A'2H_)T -(I - £'LHL)_,( [I<_
-T-K_ _e2(t- K2H2)T+ A_ _ _KZ]

(I- K_HI)R_2(I - IG.H2)T,

where/%,_ has been propagated from the lastupdate intervaland E[_I t _],E[e t_r],and E[¢ t z r] have been

assumed to be zero. Bar-Shalom [5] has shown that this propagation should be the same as that used for each

filter's (auto-) covariance matrix, under the assumptions that both filters use the same covariance propagation
method, and that this method accurately represents the propagation of the true state error covariance matrix.

We will now choose an optimal W by minimizing the trace of Pop,, that is

minJ _= rain tr Pop,.

The following properties of the trace operator are useful in the subsequent derivation:

OtrAB r o_rBA T
= =A,

OB OB

OtrBAB T
= 2BA, if A is symmetric.

0B

Taking the partial derivative of J with respect to W yields

P__L= _w(Pl + P2- _tt2- lira) - 2(& - 1t_2).
Ow

The optimal W is then found by setting _r to zero,

and solving for W as follows:

w_, = (& - ,_,_)(&+ & - a,2 - _[2)-'.

A great deal of simplification for /f'op,,given in eq. 2.5, results if eq. 2.6 is used in eq. 2.5:

Po_, = A - (& - n_2)(A + P2- _t_2- ar2)-r(& - _t_2)r

+ (& - ._)(Pt + & - a,_ - ar )-,(p, + P2- a,_ - Rr)
× (p, + $, _ ,¢_2_ R[_)-r(A _ a,_)r.

Taking advantage of cancellations, we have

P,,,,= P, - (& - ,_,_)(P,+ & - a,_ - ,_,%)-'(A- Rr),
which reduces to

•/'o,,,= P, - w,,,,(A - Rr).

(2.6)

2.1.1 Implications of the Cross-Covariance 1_

Under the assumption of common propagation models, the two local Kalman filters have three statistically

independent _sources of information: measurements available to the first filter, measurements available to the

second filter, and estimates propagated from the last measurement update [3]. While the propagated estimates
are conditioned on different sets of measurements for the two filters, both use the same equations of motion

and the same state noise spectral density. [f the correlations in the two filters' estimates arising from this

common propagation are ignored, the fusion process will underestimate the covariance associated with the fused

state estimate. Larger estimation errors may also result. These phenomena are illustrated in a simple example

considered in the following section.



_ ; DERIIP, TION OF THE OPTIMAL CO._,fBL\'ATION t3

2.1.2 Equivalence to the Minimum Variance Estimator

The optimal fused estimate derived above will be shown to be equivalent to a minimum variance estLmate tn

which the estimate from one local filter is taken to be the prior mean and the other local estimate is taken to
be a measurement.

Given the stationary, ergodic, jointly Gaussian, random vector processes X(t) and Y(t), where Y(t) =

_y_(t) 3;_(t)] with means _ and 9 = [_t .02] and covariance

P= p_. P_ '

the minimum variance estimate of X(t) given a realization of Y(t) is the conditional expectation E[,¥ly_, Y2],

i.e.,

_,,,_ = E[,.t'ly,,y,] (2.7)

/;= X/(,tqy,,y,)d,t'. (2.8)
oo

According to Bayes' theorem, the conditional density function in eq. 2.8 is given by

l(Xly,,_,)- f(X,Y), (2.9)
/(Y)

where the joint and marginal density functions in eq. (2.9 are Gau_ian, so that

[ ]'[ ]X-_ p-L ,!'-_
t -½ ),-t Y-Y , (2.].0)

/(x,y) = (2.)_/2_uff/_e

1 _ ½(y__)rv_-_(y__), (2.11)
f(y) _ (2_r),,12_/cletPvw e

and N and n are the dimensions of P and P_=, respectively.Carrying out the algebraineq. 2.9 using eqs.2.10

and 2.Il,and integratingeq. 2.8 yields

i.,.= _ + v.vP_t(y- 3).

The covarianceforthisestimate can be shown to be

P--I, = P,- - P,, e_P,'"

Bar-Shalom has shown [6]that when ,I'and _P are both estimators of the same random proce_ X, the

cross-covarianceterm above may be found by taking_t as the priormean for both X and y, i.e.,_ = _L and

= xl, and by taking it2as the reali=ationofY, i.e.,y -"i2, so that

" P=ir : E[(x - it)(i2 - il)T]

= _[+_{(x- +2)- (x- +_)ff]

= £[_l(_t- _2)T]

= P_-/t12.

The autocovariance of J_then becomes

e,, = E[(i_ - _)(i_ - _)r]
= _[(+t - +_)(_ - +_)T]

= P, + .#_- R,2- R_.

Therefore,the minimum varianceestimate forX is

_:..,+,,,= _,. + (#, - J_t_)(Pt + P_- fh: - ,'t_)-_'(i_ - _)

= _t + Wo_(_-_)
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and the covariance for this estimate is

Pzzl_ = PI-(Pt- R12)(Pt +Pa- Rt:- R_:)-t(P1- Hi:) r

= Pl - Wop,(P, - &,_)r

Thus, the optimal fusion of two estimates is a minimum variance estimate in which the prior mean is taken to

be xt and the measurement is taken to be _=.

.Now. since xt and _i2 are each themselves minimum variance estimates,

_t = E[Zb,],

_2 = E[Xly,],

then

where the prior mean is given by E[X] = E[X]fq]. Note that a global Kalman filter which processed both

measurements directly would give the minimum variance estimate

= E[Xly,, y,],

which is identical to eq. 2.7.

2.1.3 Equivalence to the Kalman Filter Estimate

Is_opt= _KF? [nthe Kalman filter,y(t) = HX(t)+P(t) by assumption, where E[_P(t)]= 0 and E[P(t)vT(t)]=

VS(t - r). Also, Pzy = P==H T, P_ = HP== Hr + V, and _ = HY_. (Here,• and p== are mmumed to have been

propagated from the lastmeasurement update by appropriatemeans.) Thtm for the globalKalman filter,

a e, H(H&,H r+v)_t,K =

XKF -- X + K(y - HR), and

P"I, _ ib'=

"- [_x,- KH&,.

If V isa diagonal matrix, another formulation for the Kalman filterexistsin which the measurements are

processed sequentially.Thus for Hi and I_ corr_ponding to the ith component of y,

" p.=Ht(Ht[_ HT + Vl) -I,KI =

_(1) Kl(yt Ht_),KF = X +

P..I,, = P.. - Kt HI P..,

and

Thus

K2 _= P_.IytHa(HaPz=I,,H T + V=) -1,

o(') + " -'<')'-- _2_KF],_KF --

P.-Iy, = P_,Iv,- K_H_P,,ly_"

fc(_) = (I - K=H=)R(_)F + Ka(H=x + v=),KF

which bears close resemblance to the optimal combination of estimates from two local Kalman filters,

_o_, = (I - Wo_,)ft_ + Wo_,_c_,

since _ = _-.t_) and £_ was chosen to minimize E[_;_rl;a]. However, eqs.XKF

only when _: - x = 0; so, in general, _op, _: _KF.

(2.12)

2.12 and 2.13 will be strictly equivalent
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2.2 Reduction of Data Transmission Requirements

In this section, some modifications which reduce the data transmission requirements of estimate fusion are

described, along with some problems associated with using them.

2.2.1 Use of Local Covariances to Update the Cross-Covariance

In order to update the cross-covariance, the optimal derivation requires that the Kalman gain and measurement

geometry matrices from the local Kalman filters be available to the fusion filter. A substitution can be made.
however, which allows the local covariance matrices to be used for the cross-covariance update.

[n the previous section, it was shown that the cross-covariance is updated by

[_12 = (I - KtHt)[_t2(l - K2H2) r.

In many applications however, the Ki and Hi may not be transmitted from the local Kalman filters to the fusion

filter. Recognizing that
P, = (;- K,&)[',,

an alternate form for the cross-covaxiance update is

This update formula may be employed for situations in which the local estimators provide estimates and covari-

antes only. However, since two additional matrix inversions axe required, speed and numerical accuracy may be

compromised; careful consideration must be given to the issue of whether or not these disadvantages offset the

decrease in data transmission requirements for a particular application.

2.2.2 Optimal Scalar Gain Approximation

In some cases, even the covaxiances from the distributed filters may not be readily available. An example is the

typical Global Positioning System (GPS) receiver, which often provides as output only a state estimate and a

figure of rnerlt. This figure of merit is typically derived from the trace of the GPS filter's covariance matrix, or

some portion thereof. In this section, a suboptimal formulation of the date fusion equations will be given which

is utilizes a figure of merit based on the covariance traces.
Following the derivation of the optimal fusion gain, assume the following form for the fusion state update

equation:
fc,ub= (1 - w)_t + w_2.

Rewriting this in terms of the estimation errors, the covariance matrix forHere w is restricted to be a scalar.

the fused estimate is

PJub ---- e.ub]E[_,_, -r
E[{_I - we_t+ we_2}{e_t- w_l + w_2}r]

= (t - 2_,+ _2)p_ + w2p_+ (_ _ _2)(&2 + RT).

As before, the gain is determined by minimizing the cost function J _ trP, ub, where

trP,,,, = (1 - 2w + w _) trPt + w 2 trP2 + 2(w - w _) trRt2.

Thus

0.s = (-2 + 2w) tr& + 2_ trP2 + (2 - 4_) tr&=,
Ow

"_ 0

U) opt

trPl - trRt2 (2.14)
::_ Wop| --

trPt + trP2 -- 2 trRt2"
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An immediately apparent problem is the calculation of trRl2 when P1 and P_ are not available. As shown

in the following section, neglecting the cross-covariance matrix often does not introduce significant inaccuracies
into the estimate. Since the use of a scalar gain will also introduce inaccuracies, simply neglecting the cross-

covariance when using the scalar gain approximation may often be appropriate. An alternative may be to treat
the trace of the cros,_covariance as a tuning parameter whose size is chosen to force estimates calculated with

the scalar gain to more accurately track estimates determined optimally.

A more significant problem with the use of this approximation is that of scaling. Often the trace of a

covariance matrix is dominated by only some of the covariance matrix's diagonal terms (as is the case when

errors in position and velocity are represented in the same covariance matrix). In these cases, the scalar gain

may only be appropriately applied to those terms which dominated in its calculation. A solution to this problem
[s to calculate separate scalar gains for each related portion of the states and covariances. For example, an

update for the position portion of the state could be calculated using the trace of the position elements in the

covariance matrices, while a velocity gain could be calculated from the trace of the velocity elements. It is not,
however, obvious how the portions of the covariance matrix which correspond to correlations between position

and velocity should be updated. Once again, since the use of the scalar gain is a suboptimal procedure, it may

be adequate to simply use the position gain for these correlations. This would be a conservative approach in

comparison with not updating these correlations at all, zeroing them out, or using the velocity gain to update

them.

2.2.3 An Estimate Fusion Algorithm Which Resets Two Local Kalman filters

In some applications, it may be po_ible or desirable to use a fusion filter to reset the local Kalman filters

providing the state estimates to it. If the two local filters have the same state vectors, same propagation models,
and are assumed to have the same, but uncorrelated, initial conditions, an e_cient form of the fusion algorithm

can be used. In this algorithm, there is no need to maintain a separate fusion filter, since the fusion update is

applied to the local Kalman filters' state estimates in the form of a reset. This algorithm is shown below.

Algorithm 2.1 (Fusion Reset) Given it = i2 = i., Pl = [=2= P., R12 = 0 at t = tp

The two local Kalman filters propagate the state and covariance matriz.h'om tp to tt using the same model, then

process indiv,dual measurements Yi :

i,(t_) = i_(t_) = i.(t_) = _(t_,tp)i.(t_)

/51(tt) = /52(it) = /_o(th) = @(tt,tp)Po@(tt,t_)T+s(tk)

gi

The cross-covarlance is propagated, and the

then calculated. The two Kalman fillers are

/_t2(tl) :

W. =

P. =

= P.Hr(_,_.g T + v,)-'
= i. + K_(_ - g_.)
= (I- K, Hi)Po.

estimate and covariance which optimally f_se this information are

then reinitialized with this information:

S(t_) (Since kl2(t_) = O)

(I - KxH1)[_12(I - K2H2) r

(L'_- [_2)(_', + _'_- R_ - RT )-_

(I - W.)xt + W.x_

P_- w. (P_ - Rr )

Reset: x_ = x_ = x., P_ = P2 = Po, [_t2 = O.



Section 3

A Simple Example

The objective of this section is to illustrate some of the principles and algorithms discussed in the preceding
sections.

An object which is falling in a constant gravity field is tracked to the ground by two radar systems colocated

directly beneath the object. A schematic of the system is shown in figure 3.1. One radar station measures range

only, the other range-rate only. Both stations process these measurements using (linear) Kalman filters.

T _..'_Falling Body

i Velocity

Figure 3.1. One-dimensional tracking example.

The two Kalman filters have imprecise knowledge of the gravitational acceleration; however, when they were

designed, a state noise spectral density large enough to accommodate their imprecise knowledge of the equations

of motion was given to both.

The state equations of the true system are

i = Fx+u,

where

[o [°,1F = 0 0 ' u = _ ,

the states are altitude and altitude rate, and g = 9.81m/see 2 is the gravitational acceleration. The model of

this system used by the filters is
x = Ffc+fi+Gw,

where

0 0 ' -0 '

17
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and w is a random vector with E[w] = 0, E[ww r] = [. and GG r = Q. The state norse spectral densLt.v (_.

was chosen such that the final covariance matrix which resulted from integrating the matrix Riccati equation,

P = FP + PF r + Q, would bound the final errors between the true model and the filter model of the system

For the following initial conditions,

l __[ 00]Xo = -0.1 ' 0 '

an initial covariance matrix which bounds the estimation errors is

0]P° = 0 0.01

Now, the final states which result for a 10 sec trajectory are

x/ = :_f =-98.2 '

so that a covariance matrix which bounds the final estimation errors is

.,_[ 0]3.61

0-100 ]

To satisfy the initial and final conditions on P,

[ 14.925 -1.800]Q = -1.800 0.360

which can be found by direct integration of the matrix Pdccati equation.

The discrete measurement models used by the filters are identical to the true measurement models. For range

measurements,

Pi -- HoXi 4- vp,

where vp, is a random variable with H# = [1 0] and E[vo,vrp,] - 20. For range-rate measurements,

where vp, is a random variable with gp = [0 1] and E[vp, vT,] --- 2.
The performance of the two filters for the given set of initial conditions is shown in figure 3.2. In this and

subsequent figures, the solid line represents the estimation error and the dashed lines indicate the corresponding

root mean square uncertainties from the error covariance matrix.

Two methods of estimate fusion are investigated in this example: optimal estimate fusion, as described

earlier in this section, and a suboptimal form of fusion in which the cro_-covariaace matrix is ignored. As

mentioned previously, it is expected that ignoring the cro_-covariance leads to underestimation of the state
error covariance, and, therefore, po_ibly to larger estimation errors. These effects are demonstrated in figure

3.3. When the cross-covariance is ignored, the dashed lines indicating the root mean square errors are discernibly

smaller, indicating some underestimation of the position and velocity variances by the suboptimal fusion. Also,

an increase in the velocity estimation error is clear in the later half of the trajectory for the suboptimal fusion
filter.

A geometric view of the mechanism of estimate fusion is shown in figure 3.4. Here, it can be seen that the

covariance of the optimal fusion filter represents the intersection of the error ellipses of the covariances of the

local Kalman filters. By comparison, the error ellipse for the fusion filter which ignores the cro_J-covariance

terms is seen to represent a smaller area. Thus this filter postulates an uncertainty which is artificially smaller

than could be expected from the information available to it.

To better" quantify the effect of ignoring the cross-covariance matrix on underestimating the covariance of

the fused estimate, a parametric study was performed. In this study, measurement variances one and two orders

of magnitude above and below the nominal were employed in both the Kalman filters and the environment. As

shown in figures 3.5 and 3.6, the effect of the cross-covariance matrix was found to decrease with increasing
measurement accuracy. This phenomenon is explained by the fact that the Kalman filters weight their measure-

ment updates more heavily relative to their propagations as measurement accuracy increases. If measurement
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Figure 3.4. 1-Sigma error ellipses for the nominal case.

variance were held constant, and process noise variance were increased, the same phenomenon would occur. In

either case, measurements are very accurate compared to the propagated estimates, so the tracks being fused

contain proportionally less of the propagation information which is common to both tracks. The tracks, there-

fore, become less correlated, and their cross-covariance becomes reduced in comparison to their autocovariances.

Measurement frequency is also a factor, as shown in figure 3.7. With frequent measurement updates, the Kalman

filters are again forced to more heavily weight their me&surements in comparison to their propagated estimates.
Thus in situations in which process noise is very small compared to measurement noise, or in which measure-

ments occur infrequently, the cross-covariance should not be ignored. Since in most filtering applications the

opposite is true, the cross-covariance matrix may often be neglected.

In the investigation just described, the cross-covariance update for the optimal fusion filter was performed

using the inverse of the a priori covariance matrices from the two local filters, i.e.,

This is the alternate update form described in the previous section. As mentioned in that section, use of this

form may cause numerical difficulties due to the additional inverses required for this calculation. Therefore, as

a validation exercise, the performance of a fusion filter which used the original cross-covariance update equation

Rl_ - (I - Kz H1)Rz2( I - K_ H2) r

was compared to the results shown above. This comparison is shown in figure 3.8. A closer inspection of the

data showed exact agreement. This degree of agreement is due to the dimension of the covariance matrices in

this example being merely two, since very accurate inverses can be calculated for 2 x 2 matrices.

This example was also used to demonstrate the effectiveness of the scalar gain approximation. The actual
cross-covariance was calculated, and its trace was used in computing the scalar gain. As shown in figure 3.9, the

estimate generated using a scalar gain closely approximated the optimal gain in position. However, due to the
scaling problem alluded to previously, very little of the "good" velocity information from the range-rate filter
was allowed into the fused state estimate.
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Section 4

Application to a Lunar Rendezvous Problem

This section presents a scenario in which the estimate fusion algorithm might be realistically applied: a ren-

dezvous problem. In this problem, accurate relative state and inertial state information are required for good

performance, yet both are not typically available from the same navigation processor. The sections below will
describe such a problem and show how estimate fusion can be used to effectively improve the performance of a

system which uses separate, stand-alone inertial and relative navigation processors.

4.1 Description of the Problem

An active spacecraft orbiting the Moon in a near-circular orbit is attempting to rendezvous with a passive

spacecraft in a neighboring co-planar circular orbit. Initial uncertainties in the active vehicle's estimate of its
own state corrupt its initial intercept maneuver, and it is desired to perform a midcourse correction once an

updated state estimate is available from the vehicle's navigation system.

This navigation system is a distributed system consisting of two Kalman filters. One filter, referred to as
the rendezvous filter, processes measurements derived from a radar system of range and elevation angle to the

passive vehicle, whose state is assumed to be perfectly known. The other filter, referred to as the ground beacon

filter, processes measurements of range from two beacons on the lunar surface whose positions lie on the vehicles'

ground track and have been previously surveyed to high precision. These measurements are derived from the
transit time of a signal broadcast by the beacon. Both filters use the same simple spherical gravity model, which

is augmented by Gaussian process noise. A simple model is also used for the environment's dynamics, which

consists of a simple spherical gravity model augmented by Gatmaian process noise and a bias term. These models

will be described more fully in section 4.3.

It is expected that the rendezvous filter will produce accurate estimates of the relative position and velocity
between the two vehicles but inferior estimates of the inertial states of both vehicles. The occurrence of large

inertial state errors could lead to inaccurate maneuver targeting solutions as well as to a large buildup of relative

state errors during propagation intervals [10]. To prevent the occurrence of such deleterious effects, it is desired

to rectify the rendezvous filter through the use of a fusion algorithm which optimally combines the estimates of

the rendezvous and ground beacon filters. The optimal state estimate and error covariance will then be used to

reset both filters.

The passive vehicle's orbit hua radius of 2 lunar radii. The active vehicle begins its maneuver 100 km behind
and 50 km below the passive vehicle, aa measured in a curvilinear target-fixed coordinate frame. The transfer

is constrained to occur over a 30 degree arc, beginning at longitude 345 degrees and ending at longitude 15

degrees. The ground beacons are located at longitudes 330 degrees and 30 degrees, remaining visible during the
entire maneuver. The selenographic frame to which the ground stations are fixed is assumed to be nonrotating,

an approximation due to the short length of the maneuver. The orbit transfer takes approximately 25 minutes.
The nominal maneuver is shown in figures 4.1 and 4.2, which depict the maneuver from inertial and target-fixed

viewpoints, respectively.

4.2 Rendezvous Targeting

Hill's equations are used to calculate the initial and midcourse intercept maneuvers.

equations are given, and a curvilinear target-centered coordinate system is defined.

In this section, these
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4.2.1 Target-Relative Curvilinear Coordinates

Let the orthogonaL target-relative radial and downtrack coordinates of the chaser be represented by d and _

respectively. In the figure 4.3 below, an alternate system of coordinates is depicted which represents the chaser

position in a frame that follows the curvature of the target vehicle orbit track. In this system,

_ the radial distance of the chaser above the target vehicle orbit track, and

_- the ,distance of the chaser from the target along the target vehicle orbit track.

From the fi_ure, it can be seen that
= prO,

A
where pt = Hrtll. It follows that, since Pt is a constant,

(, =prO.

Next note that

Solving for O and differentiating yields

tanO = --
Pt +fi

O= [(Pt+fi)O-vu]tp, coso.

axis

_" _" ,_ _,_ axes

r

/.

zr_malyine_ially
fixed axis

Figure 4.3.Illustrationof target-centeredcurvilinearcoordinates.

From the definition Pe = Ilr, ll, we have

and that

Pc = Pt + u,

Pc cosO=pg+fi.

Thus

and

(p= + ,_)cos 0 = Pt + fi,

fi_ Pt+fi
cos 0 pt.
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COS _ "

Expressing the target-relative position and velocity of the chaser spacecraft in terms of the curvilinear coordinates

just defined is a convenient way of specifying rendezvous maneuvers. However, to integrate the equations of
motion, the relative state defined in this manner must be expressed in inertial coordinates.

4.2.2 Conversion From Target-Relative Curvilinear Coordinate System to

Planetocentrie Inertial Coordinate System

A procedure forconvertingpositionand velocityvectorsexpressed intarget-relativecurvilinearcoordinatesinto

an inertialsystem isgiven below.

Algorithm 4.1 (Position Conversion) Gzven fi,FJ,rt ,find re.

e. IIr_-II-- Ilr, II + a

3. a = [Ir¢llcose -IIr, ll

4. _ - (l/r,l/+/])tan0

[ cosf -sinf ]5. T = sin f cos f

6' r_'=T[ _]0

7. rc=rt+ret

Algorithm 4.2 (Velocity Conversion) Given _,_,rt,find re.

e. _ = _cosO-O_

3. u¢o,, =/Irdl + ']

,. _ = _ + A.q_lal¢_

5. _Ja_ x rot = rett

v + w a_ x rot

7. i', = i', _- i',,

Using algorithms 4.1 and 4.2, we can express the target-relative curvilinear positions and velocities first in terms

of the target-relative inertial states, rot and i'a, and then in terms of the planetocentric inertial states, r_ and

i'_. The latter will be used for numerical integration of the equations of motion of the spacecraft.
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4.2.3 Targeting Method

The relative motion of two bodies in neighboring near-circular orbits can be described using Hill's equatzons

[ll], the in-plane components of which are

u-2n_-Sn2fi = f_, and

_+2_,t, = /_.

The notation is the same used previously with n = _ The force-free integrals of these equations can
be solved for the initial relative velocity which results in an intercept of the two trajectories at some later time.

This solution, which can be found in Kaplan [11], is as follows:

: [6fio(nt - sin at) - f)o]n sin nt - 2nfio(4 - 3 cos nt)( 1 - cos nt)

Vo = (4sinnt - 3nt)sinnt +4(1 - cosnt) 2

3o nfio(4 - 3 cos at) + 2( 1 - cos nt)}o
= sin nt

To complete the rendezvous targeting, the required relative velocity for intercept calculated using Hill's equations
is converted to an inertial velocity using the method described in section 4.2.2.

4.3 Models

The measurement and dynamics models used by the environment and the navigation filters are described in

detail in this section.

4.3.1 Environment

The environment portionof the simulationconsistsof the computation of true dynamical quantitiesand the

use of these quantitiesto simulate measurements. The dynamics consistof a simple sphericalgravitymodel,

augmented by Gaussian processnoiseand a biasterm. The measurements ate ofrange from two beacons on the

lunar surface,presumably derivedfrom the transittime ofsignalsbroadcast by the beacons.

Dynamics

A simplifiedmodel of the lunar gravityisused in the environment. The model consistsof a sphericalgravity

fieldcorrupted by Gaussian noise and a bias in the gravitationalparameter. The chaser and target vehicle

accelerationsare given by

i;_(i) = -(p + 6t_)_ - a_.,.rl (0, 1), and

., r,(t)

The variablerl(0,I)representsa vectorofuncorrelatedrandom vaxiables,each element ofwhich ischaracterized

by a normal densityfunction.Also, 6/_= 10-4tzand o'_.o,,= 0.001/_/llrc(t)ll2.

These two second-ordernonlinemrvectordifferentialequationscan be writtenasa collectionoffourfirst-order

vectorequations by definingan environment statevectoras follows:

r_(t)

x,_(t) zx to(t)
= rt(t)

r,(t)

Then _,.,_,,(t) = f(x,,o(t)) + w_,_(t), where
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Table 4.1. Integrator Comparisons. Noise Off

Integratora

ode23
ode45

ode78

nlz33

Ezecutton No. of Tolerance b

Time, sec Steps
11.88 75 10 -Iz

1.98 7 10 -t

30.02 52 l0 -l

2.23 20

Step Szze, ¢

sec

0.5

10 second integration of circular orbit.

bMax. tolerance setting required for accuracy compacable to best integrator. AppLies only to

vaxiable-step integrators.

"-Step size setting required for accuracy comparable to best integrator. Applies only to fixed-

step integrator.

Integrator a

ode45

ode78

nlz33

Table 4.2. Integrator Comparisons, Noise On

Ezecution No. of Tolerance Step Size,

Time, sec Steps sec
2.17 8 I0 -e -

3.79 6.8 10 -6 -

2.20 20 0.5

Norm of
Errors b cm

2.71

0.886

0.872

=Mean of tO c_u_s. Adequate remflt, could not be achieved truing ode2$. Noise wffi- applied radially,

with standard deviation of 1_ of the gravitational acceleration.

bError taken aa difference from mean (i.e., noise off) trajectory.

f(x_._(t)) =

i',(t)
6- " r,(t)-(_ + .J_
i.,(t)
6'_ r,(o-(_+ .J_

w,.,,(t) =

0

-a_...n(o,I)
0

-_...,I (o,I)

with tp < t < tk and an initial condition given by Xsn¢(tp). Note that this motion is restricted to a plane, so by

choosing an inertial basis for these vectors which is aligned with the plane of motion, only two scalar components

are required for each vector. Thus x,,_, containa eight states.

Numerical Integration

Because of the noise terms in the dynamical equationa, a numerical technique was chosen to integrate the

environment state vector. Three variable step methods and one fixed step method were evaluated for accuracy

and speed in performing thin numerical integration. The variable step methods use pairs of Runge-Kutta formulas

along with Fehlberg's coeflicienta [12]. These three methods use 2nd- and 3rd-order, 4th- and 5th-order, and

7th- and 8th-order pairs of formulas, and are designated ode2$, ode45, and ode78, respectively. The fixed step

method, designated a/z$$, uaes a formula derived by Nystr6m with coefficients determined by Lear [13]. As
tables 4.1 and 4.2 show, nlz$$ was found to have superior accuracy and similar speed in comparison with the

other integrators, so it was chosen for this application.

Simulated Measurements

Direct measurements of noise-corrupted range were assumed to be available. To facilitate the calculation of

these measurements, a range function was defined in terms of two position vectors, r and s,

Gp(r,s) (r s)r(r-- s).
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Then the range to ground beacon i from the chaser vehicle is

pb,(tj) = Gp(rb,, r¢,_,(t_)) + _pbr/(O, 1),

The range to the target vehicle from the chaser is

pt(tj) = Gp(r,...(tj),r¢...(tl)) + o'p, r/(O, t).

The angular measurement for the rendezvous filter is assumed to be made with respect to a perfectly aligned

inertial platform. Therefore, if p = rc,_,(tl) - r .... (tj) the noise-corrupted angular measurement can be

expressed using the inertial components {Px, PY } of p as follows:

O,(tj) = arctan pY + ¢o,r/(O, t).
Px

4.3.2 Extended Kalman Filters

The two Kalman filters in this simulation use dynamics and measurement models which approximate the envi-

ronment models. However, the filters do not have knowledge of, nor attempt to estimate, the gravity bias term.

The filters must also propagate and update the covariance matrices associated with their state estimates.

In subsequent descriptions of the filter models, the following notation will be used:

_(tk) = x(t_)l(y(t_-L), y(tk-_), ...)

x(tk) = x(t,)l(y(t_), y(t__x), ...)

That is _(tk) represents the estimate of x(t_) conditioned only on past measurements, or the a prwrl estimate,

whereas x(t_) is the estimate conditioned upon the current me_urement as well, or the a postemom estimate.
This same notation will be applied to all quantities estimated by each filter.

Dynamics

Since the filters' best a pmom estimates for the zero-mean noise terms in the dynamics are zero and since the

filters are denied the knowledge that a gravity bias exists, their model of the chaser vehicle acceleration is

Keplerian, /_rc(t)

i;_(t)- iir_(t)llS.

As with the environment model, this second-order vector equation can be reduced to a pair of first-order vector

equations which define the derivatives of po6ition and velocity. The state vector for the ground beacon filter,

therefore, is

x.(t) _x [ re.(t) ]= r,,(t) '

which has four scalar states. Again il(t ) = f(xg(t)) where

r¢,(t) ]f(xg(t)) = ro.(,) ,

with tp< t< t_ and an initialconditiongiven by ig(tp).
The rendezvous filterrequiresknowledge of the targetvehiclepo6itionin order to calculateitsrange mea-

surement. T_hisquantity iscalculatedusing the same Keplerian accelerationmodel as isused for the chaser

vehicle.Thus the rendezvous filterstatevectoris

I r_.(t)
x,(t) A rc.(t)

= rt.(t)

r,,(t)
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which has eight scalar states. As before it(t) = f(x_(t)) where

f(x_(t)) =

i-:,(t)

-p_
r,,(t)

r_ (t)
-__

with tp < t <__t, and an initial condition given by ir(tp).
Although not required due to the Keplerian acceleration model used by these filters, states corresponding to

chaser and target velocities were numerically integrated using nlz$$. This choice was made to ensure compati-

bility with the environment model, provide flexibility for incorporation of other gravity models, and simplify the

simulation design.

Covariance Propagation

Both the rendezvous and ground beacon filtersmaintain a covariance matrix mmociated with the statesthey

are estimating,i.e.,the chaservehiclepositionand velocity.Thus each filtermust propagate a 4 x 4 covariance

matrix between measurements. These covariancematrices obey the generalizedmatrix Riccattiequation [14]

e(t) = F(t)P(t) + P(t)Fr(t) + Q(t).

An approximation to the solution of this differential equation is

P(tk) = ,l,(tk, te)P(tp)@r(tk, re) + S(th).

The state transitionmatrix,@(t_,tp),isapproximated by mmuming the dynamics are constant over the time

intervalAt = tt- tp. As a result,a well-known power series[15]ctm be employed where terms of order At 3 aad

higherhave been truncated:

In this series,

2 At2
@(tt, re) = I + F(i(te))At + F (i(te))-_-.

a olJF(i(t_)) = _ *c,,)

O_x2 12x2 ]= G(i(t_))02x2, '

where
1, r + 3_'.._,(t,)ff(t_).

G(,(tp))= ili. (t,)ll 3 #,(te)ll

According to Lear [19], this approximate solution is _curttte to 10% for At = 10 see and to 1% for &t = 1 see

for a I rev propag&tion in a near-Earth orbit with a spherical gravity field.
The state noise eovaritmce matrix can be expressed in terms of the state noise spectral density matrix using

the integralrelation

S(t_) = I_(t, r)Q(r)q_r(t, r)dr.
P

An approximation for this integral can be found by using a first-order truncation of the transition matrix and

by assuming the integrand is constant over the interval of integration,

S(tk) = [{I + F(x(t,))At} Q(tp) {[ + F(_t(te))At}T] At.

For the filters in this simulation, process noise is added only to the acceleration states. Thus

[ 02x2 02x2 ]Q(t_)= 02x2 qr. '
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where

Thus for this state noise spectral density matrix, the approximation given above for the state noise covariance
matrix becomes

[ OroAta Oro At2 ]S(t,) = Qr_Xt 2 QroA t .

Measurement Processing

The filters' models for estimated measurements resemble the environment models, with the exception that the

filters' best estimates for the zero-mean noise terms are zero. Thus for the ground beacon filter, the estimated

range to ground beacon i is Gp(rb,, Fc_(tj)) so that this filter's measurement residual is

_pb,(t: ) = p_,(tj ) - ap(rb,, Fo,(t_)),

and the range measurement residual for the rendezvous filter is

_p,(t_) = p,(t: ) - c,,(_,, (t_). _,(t_ )).

Similarly, for p = Gp(_t,(tj), fc,(t_)) the angular measurement residual for the rendezvous filter is

60t(ti) = O,(tj) - arctan .---.
Px

In order to proce_ this measurement, each filter must calculate the matrix of partial derivatives of its

measurements with respect to its states. For convenience, a unit range vector function is defined

g,(r.s) A (r--s) T=

The measurement partial derivative matrix for the ground beacon filter using gp(r, s) is

Hg(tj) a= _ = [-gp(rb_.r"%(t._)) 0 O]
_t,c,,) -gp(r_,,_,(t_)) 0 0 "

For the rendezvous filter, we can define

,, 1
_(r, .) = sl'd(n'r- sy) - -  x)l.IIr

Then the measurement partials matrix for the rend_vous filter can be written as

z_ _ = [-gp(iFt.(t_).iFe.(tj)) 00]H,(ti) = _,(,,) g,(e,,(t_),F¢,(tj)) 0 0 '

where y, _ [p,, 0,] T.
The matrices calculated above are used in conjunction with the a prior= covariance matrices in the calculation

of the Kalman gains for each filter. For the ground beacon filter, the Kalman gain is given by

Kg(tl) = [_g(t_)Hg(tj)r(Hg(tj)[_g(t#)Hg(tj) r + Vo) -t,

and for the rgndezvous filter

g_(t#) = P,(ti)H,(tj)r(H,(¢j)F'_(tj)g,(tj) r + V,) -_.

Here, V_ and t_; are the measurement covariances for the ground beacon and rendezvous filters, respectively
Note that since the measurements are assumed to be uncorrelated, these matrices are diagonal.
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Extended Kalman Filter Updates

The standard Kalman filterisdesigned to operate on linearsystems and as such cannot be appliedto the esti-

mation problem consideredhere,which has nonlinearitiesin both itsdynamics and itsmeasurements. However.

an approximate method known as the extended Kalman filter(EKF). which has a similarstructureto the linear

Kalman filter,can be appliedhere. For the ground beacon filter,the EKF stateupdate isgiven by

x#(t:) - _g(t:) + Kg(t; )6pb(t i).

Similarly, for the rendezvous filter

xr(tj) = it(t)) + Kr(tj)6ydtj).

The error covariance matrices associated with the two filters are then updated using

Pg(tj) = (I - Kg(t i)H#(tj))Pg(tj), and

Pr(tj) - (I- Kr(tj)Hr(tj))Pr(tj).

A detailed description of the extended Kalman filter can be found in many standard texts, e.g., [17], [18]. [19].

4.3.3 Kalman Filter Fusion and Reset

A form ofthe estimate fusionresetalgorithm developed insection3 isused to fuseestimatescontaininginertial

informationfrom the ground beacon filterwith the relativestate informationpresent in the rendezvous filter.

As with the simple trackingexample of section3,a suboptimal form of the fusionalgorithm which ignoresthe

cross-covariancematrix iscompared to the optimal fusionmethod.

First,the optimal fusiongain matrix iscalculatedas

Wop,(ti) = (/_',(tj) -/_,(ti))(P,(ti) +/_0(h) -/_,(tj) -/_,t,(ti)r) -t,

where

Rop,(ti) = (I - K,(t#)H,(t#)) R,et(tj) (I - Ke(t#)Hs(tj)) r.

The cross-covariances are propagated from the last reset using

/_*e,(h) = (l'(h, tp)Roe,(h, )@r (t_ , tp) + S(tj ),

but at the end of each fusion update, the croas-covariance is reset to 0, i.e. /_,et(tp) = 0. so that

= s(h ).

Since the suboptimal fusion .filter ignores the pretence of the croas-eovariance, the suboptimal gain is simply

W,,,_(h ) = P,(t_)([',(t¢) +/_e(tj)) -l

The fusion state update for both the optimal and suboptimal algorithms is performed using

i.(t# ) = (I- W.( ti ) )ft,( h ) + W.( tj )_te( tj ).

where the subscript '*' it uteri since the optimal and suboptimal state updates have the same form and no dis-

tinction is necessary. Note that, at with the EKF, the update appears to be made directly on the nonlinear states

despite the assumption of linearity made in the derivation of this algorithm. However, within the assumptions

made in the EKF approximation, the fusion update equation is valid.
The covariance matrix associated with the fused state estimate is calculated next using both the optimal and

the suboptimal method:

[_opt(tj ) = (I - Wopt(t; ) )P,( tl ) + Wopt(t_ )Ropt( tj ), and

Psub(tj ) = ([ - Wsub(t., ))P,(tj ).
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Table 4.3. Filter Desi_;n Parameters

rende:vous ground beacon

filter filter

Initial RMS Pos. Error, m

Initial RMS Vel. Errors, m/see _

RMS Accel. Noise, m/sec "_b

RMS Range Meas. Error, m
RMS Ang. Meas. Error, rad

Propagation Interval, sec
Measurement Interval, see

100

2

0.1

30

0.15

t0

60

100

2

0.I

30

i0

60

a InJtin.i errors are applied equally in All chan.nels

bNoise auu.med to be equttl in All ch_a.rtet_

Finally, the filters are reset by replacing their estimates of the chaser vehicle states with the estimate derived

from fusing the two estimates and by replacing their error covariance matrices with the covariance resulting from

estimate fusion. Thus for the optimal fusion update

x_P_, (tj) = Xop,(tj), (state update)(;}

= x.,(t,),

/_,"_'(t#) = ,b@t(t)), (covariance update)

and for the suboptimal fusion update,

i,ub ,,.) = _,ub(t_), (state update)
f'(1:4) !,_j

p[ub(t)) = /bsu_(tj) , (covariance update)

/_;ub(t$) "- /_au,(tj).

4.4 Results

The problem just described was studied by coding a simul&tion of it in Matlab; this simulation was executed
on a DECStatwn 5000 workstation in the Spacecraft Navigation and Rend_vous Laboratory at the University

of Texas at Austin. The ground beacon and rend_vous filters were manually tuned to achieve satisfactory

performance. The design parameters chosen through this process are shown in table 4.3. [n the following, the

performance of these filters operating in a stand-alone mode, unaided by estimate fusion, is compared to their

performance when reset using optimal and suboptimal forms of the estimate fusion algorithm.

In figure 4.4, typical performance of the rendezvous filter and the ground beacon filter without the use of
estimate fusion is shown. The solid lines represent estimation errors and the dashed lines the corresponding

root mean square uncertainties of these errors as derived from the error covariance matrices. Shown here are
radial and downtrack components of the errors in the estimates of chaser vehicle inertial position. This figure

may be compared with figure 4.5, which shows the estimation errors for the same quantities as calculated by
the fusion-aided rendezvous filter. This filter is reset using both optimal and suboptimal forms of the estimate

fusion algorithm (recall that the suboptimal form ignores the presence of correlations between the two Kalman

filters). Since both filters use the same models and start with the same initial conditions, the ground beacon
filter which has been reset will exactly match the rendezvous filter so it is not shown. As indicated by the root
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mean square bounds on the estimation errors, aiding the Kalman filters using etther of the fusion reset algortthms

has brought significant performance improvements, most notably in the radial channel of the rendezvous filter
during the first half of the maneuver. However, note that fairly large estimation errors are present after the last

measurement in the downtrack channels of the fusion-aided filters. Note also that no noticeable degradation in

accuracy occurs if correlations are ignored in the fusion algorithm.
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Figure 4.4. Inertial position estimation errors for unaided Kalman filters.

The velocity estimation, shown in figures 4.6 and 4.7, was quite good even for the unaided filters. However,

the same trends noted above may be discerned through careful observation.

Relative state estimation errors, expresaed in terms of coordinates in the direction parallel to the line-of-

sight between the two vehicles and its normal direction, are next shown in figure 4.8. The unaided rendezvous
filter is compared to the rendezvous filter reset by the optimal fusion method. Since the target vehicle states

are perfectly known to these rende-.vous filters, trends similar to those noted for the inertial state estimates

are observable here. In particular, it ia clear that the unaided filter is nearly equivalent to the fusion-aided

filter in accuracy along the line-of-sight to the pamive vehicle, but its accuracy normal to the line-of-sight is

heavily range-dependent. Resetting thi, filter using an estimate which contains the data from the ground beacon
filter greatly enhances its ability to accurately estimate the relative state components which are normal to the

line-of-sight.

A great deal more inaight into the procem of estimate fusion may be gained through visualization of the
optimal combination. To thia end, projections onto the pc_ition plane of the hyperellipsoids corresponding to

the error covariance matrices are shown in figures 4.9 - 4.12. In section 3, similar plots show that the optimal

fusion algorithm determines the error eUipse which best fits the intemection of the error ellipses from the two

filters being fused. Now it would appear that a best fit hyperellipse is being achieved, which is not necessarily

the best fit ellipse when projected onto a plane. Note that the rotation of the ellipse deriving from the unaided

ground beacon filter, indicated by the dashed line, corresponds to the orbital motion of the chaser vehicle.
The ellipse corresponding to the unaided rendezvous filter maintains a fairly constant orientation, since the

line-of-sight between the two vehicles is fairly constant, but as the relative distance closes, the accuracy of the

angular measurements in this filter exceeds the accuracy of its range measurements such that its semimajor and
semiminor axes become transposed. Note also the close match in size and orientation of the ellipses corresponding

to optimal and suboptimal fusion updates.
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Section 5

Conclusions

5.1 Summary

This document presented a new derivation of an algorithm which fuses the output of two Kaiman filters based

on optimization theory. Through the use of a simple example of tracking a failing body, this method has been

shown to provide an estimate whose covariance is the best fit covariance to the intersection of the covariances
from each filter. Several modifications to the algorithm which reduce data transmission requirements were also

presented, including a scalar gain formulation and a form of the algorithm which resets the two Kalman filters.
The latter of these was then applied to the problem of lunar rendezvous, in which one Kalman filter processes

relative measurements and the other inertial measurements. Although several restrictive assumptions were

made in the analysis, including perfect knowledge of the target vehicle's state, promising results were obtained,

demonstrating the effectiveness of the fusion reset algorithm.

5.2 Areas for Future Research

Two limitingassumptions made inthisanalysiswere (I) no unknown parameters must be estimated to process

the measurements and (2)the stateofthe targetvehicleisknown perfectly.Although neitherislikelyto be true

fora realisticapplication,theseassumptions were requireddue tothe limitationofapplying the fusionalgorithm.

as presentedhere,tocombining filterswhich have the same statevector.Below, some ofthe consequences which

can resultfrom making these assumptions are addressed.

As an example of problems induced by unknown parameters, consider the followingcase: a clock bias in

the on board receiverforthe signalsfrom the ground beacons causesan inaccuratedetermination ofthe signal

transittime. Neglecting any frequency driR in the on board clock,thisbias can be modeled as a constant,but

unknown, range bias which isthe same for both ground beacons. Although the rendezvous radar isa two-way

ranging system, clock driftcould _ cause a range bias to occur for this measurement type. Ifthese biases

are ignored in the navigationfilters,resultslikethoee shown infigures5.1 through 5.3 may be obtained. Here,

range biasesof approximately 35 meters and 19 meters are presentin the measurements of the ground beacon

and rendezvous filters,respectively,but these biasesare ignored by the filters.As the plotsshow, these biases

appear to directlycorrupt the po0itionestimatesof both aided and unaided filters.

Although thesebiasescould be estimated by the Kaiman filters,itisnot clearhow to utilizethisinformation

in the fusionresetalgorithm pre_nted herein.Ifonly thoee stateswhich are common to both filtersare reset,

thesestateswillbe incompatible with the statesunique toeach filtersincetheircorrelationswillbecome invalid.

Alternatively,a centralizedfusionfiltercould be utilizedto estimate allthe statespresent inboth filters.The

difficultyhere isthat the algorithm as presented treatsone of the filtersas the a priom data source and the

other as a measurement source (section2.1.2).Itcan be shown that the rank of the a postemom covariancein

such an estir0ationscheme isequal to the rank of the a priorlcovariance.Since the filtertaken to be the a

pmor_ data source does not contain allof the statesmodeled by the fusionfilter,the covarianceresultingfrom

the fusionprocess willhave insufficientrank. A potentialsolutionto thisdeficiencywould be to reformulate

the fusionalgorithm such that an a priorlcovariancefor allthe stateswere maintained. Such an approach has

been taken by severalauthors, includingSpeyer [2],Willsky [3],and Wei and Schwarz [20].However, such an

approach requiresthe additionalprocessingof a centralizedfusionfilterwhich isnot needed forthe fusionreset

method.

41
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Kalman filters.

An example of the effectsof errorsin the targetstateisnext shown infigures5.4 through 5.6.As predicted

in[i0],the rendezvous filterisableto accuratelyestimate the relativestatesbut not the chaser'sinertialstates.

Unfortunately,when the accurate inertialinformationfrom the ground beacon filterisfused with the accurate

relativestateinformation,degraded estimatesofboth result.This occurs because the targetstatesare assumed

to be perfect in the rendezvous filter,so that the update resultingfrom the fusion algorithm is artificially

constrainedto be appliedentirelytothe chaservehicleinertialstates.Ifboth the targetand chaser statescould

be updated, then itseems likelythat betterresultswould be achieved.This would requirethe additionoftarget

stateestimation to the rendezvous filter,making itsstatevectorincompatibleforfusionwith the ground beacon

filterby the presentmethod.
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A. 1 Abst ract

A new derivation of an algorithm which fuses the outputs of two Kalman filters is presented and placed within

the context of previous research in this field. Unlike the work of other authors, this derivation clearly shows the

combination of estimates to be optimal, in the sense of minimizing the trace of the fused covariance matrix. The

algorithm assumes that the filters use identical models and are stable and operating optimally with respect to

their own local measurements. The method is also demonstrated to provide an estimate whose error ellipses are

contained within the intersections of the error ellipses from each filter. Modifications which reduce the algorithm's
data transmission requirements are also presented, including a scalar gain approximation, a cross-covariance

update formula which employs only the two contributing filters' autocovariances, and a form of the algorithm
which resets the two Kalman filters. The latter of these leads to a modification of the Kalman filter, which

we call the reinitialized Kalman filter (RKF). This filter is then applied to the problem of lunar rendezvous in •

which one stand-alone Kalman filter processes relative measurements and another inertial measurements. These

results demonstrate the effectiveness of the optimal RKF and an RKF which ignores the presence of correlations

between the two contributing filters as well as that of the scalar gain approximation.

A.2 Introduction

An area ofincreasinginterestinsystems researchisthat ofcombining data from a distributednetwork of local

sensorsand/or estimatorsinto a globalestimate which combines the informationavailableto each system in a

complementary fashion.Such techniqueshave a wide range ofapplications,includingdistributedprocesscontrol,

firecontrol,remote sensing,and managing data from redundant systems. Another interestindata fusionresearch

ismotivated by the proliferationofblack-box navigationsystems such as mo6t Global PoeitioningSystem (GPS)

receivers.A desireofcontemporary spacecraftdesignersisto combine such off-the-shelfsystems in a distributed

architecturein such a way that the measurement availabilityand geometry of the varioussystems complement

one another in some optimal fashion. Typically,modificationof the outputs of these systems to meet data

fusionrequirements isnot a co6teffectiveoption,so the desireexiststo combine the availableinformationinto

a globallyoptimal estimate which may then be used to resetthe localprocemors. In thisway, modificationsare

made outsidethe existingsystem, rather than inside.Such a scenarioisthe focusof the work presented here.

Severalapproaches to the problem ofdata fusionare po_ible, and many have been consideredinthe literature.

The most basic form ofdata fusionoccurs inthe globallyoptimal Kalmma filter,which optimally combines raw

measurement data from varioussources.A basicassumption, however, isthat the measurements are uncorrelated

intime. If,ratherthan raw measurements, itisdesiredto optimallycombine the estimatesfrom severalKalman

filters,the zero autocorrelationassumption willbe violated.This problem has been referredto as filtercascading

[2I].Various solutionshave been presented to thisproblem, includingthe works ofWillner,et al.[I],Speyer [2],

Willsky,et al. [3],Bar-Shalom, et al.[5],[6],[7],and Alouani and Birdwell[4].Other po_ibilitiesexist,such as

the case in which some data sources are raw measurements and others are the outputs of estimationschemes.

This classof data fusionhas been labeledhybrid fusionand hM been examined both by Willsky,et al.[3],and

Blackman [8].

In this work, an optimization-ba_.d approach is taken to solve the problem of combining the estimates from

two Kalman filters which are tracking the same target but possibly have different measurement sets. Several

modifications to the algorithm derived in this way are presented which reduce data transmission requirements.

Finally, the algorithm is applied to a navigation system which optimally combines the state estimates of two
Kalman filters on board a lunar orbiting spacecraft. The spacecraft state estimates obtained with this method
are used to facilitate a rendezvous mission with another lunar orbiter.

A.3 Problem Statement

Two continu0us/discrete extended Kalman filters [17], [19] are operating on the system described by

x(t)= f(x(t))+ w(t); w(t)~ N(0,w(t)6(t- r)),

ylj= h1_(x(ti))+ v_i; vli~ N(0,V_j6_),

y_j = h2j(x(tj))+ v.u_ v2j ~ N(0, V2j/_#k),

(A.I)
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where filter [ processes the discrete measurements Yt_, filter 2 processes the discrete measurements Y2: an,:[

j = 1,2 ..... Also, the notation r --- N(0, R) implies that r is a zero-mean, white gaussiaa vector random process
with R a,s its covariance, 6(t - r) is the Dirac delta, and 5j_ is the Kronecker delta. Hereafter, the subscript

'j' will be omitted to simplify the notation. Each filter (i = 1.2) updates its state estimate and _tate error

covariaace matrix at time tj using

X, = _, + K,[y, - h,(:L)] (A.2)

and

where h', is the Kalman gain,

P, = [I- K,H,(x,)]P,.

K, = P,H,T(_,)[H,(_,)P, Hr(fq) + V,] -i,

and

0hdx(tj )) :c,(',_H,(_,) = 0x(tj)

Here, and subsequently, the notation "' represents an estimate immediately posterior to a measurement update,
and '-' indicates an estimate prior to the incorporation of a new measurement. The filters propagate their states

and covariances between measurements via

_,(t) =f(_,(t)),

with X,(t_) as an initial condition and

P,(t) = _(t, t, )Pi(tj)_r(t, tj) + S(t), (A.3)

where

¢(t, t¢) = F(fq(t))@(t,tj); '_(t i,tj) = I,

I
F(fq(t)) = Ox(t) I_t.(,)'

and

/'S(t) - @(t, r)W(r)@r(t, r)dr.
J

It isassumed that the filtersare stable and operating optimally with respectto theirown measurements and

use the same system model with the same initialstatesand covatiances.The problem at hand isto fuse the

outputs of the two Kalman filters,as depictedin figureA.l,in an optimal fashion.

A.4 Problem Solution

A.4.1 Optimal Combination of A Posteriori Estimates

In order to combine the estimates from these two filtersin some optimal fashion,we assume a form for the

optimal combination of the filters'a poster,or,estimates as follows:

x. = (I - W)_kt + Wx2, (A.4)

where the fusion gain matrix W is to be determined and the subscript '*' indicates the optimal combination.

Next, we define the a poster'tom estimation error as

x-x,, i= 1,2,* (A.5)

From eq. A.4 and eq. A.5, it follows that

6. = (I- W)6t + We2. (A.6)



50 APPENDIX A ESTI.'_IATE FUSION FOR LUNAR RENDEZVOUS

me_.
set 1

meas.

set 2

stateest. i

state
est. 2

FUSION

optimal
-------. combin-

ation of
state est.

Figure A.I. Estimate fusion schematic.

The state error covariance matrix for the optimal combination is defined to be

A _ El+. +r]. (A._)

Computing P. in eq. A.7 using &. in eq. A.6 yields

A = Pt- (P_- k)wr - wCP_- kr) (A.8)

+ W(P,+ e,- k- kr)wr,

where R = E[ex e_'], which is the a postemori cros_-covariance matrix.
To determine R, recall eqs. A.1 and A.2,

x_ = _, +g_(x)+v_-h+(_)]
= ii + K,[_(x) - h/(i+)] + K, vi

_. f_i+K_Hi_+K,v_; i= 1,2, (A.9)

where ei =_ x - xi and the dependency of Hi on & has been suppremed for clarity. Rewriting eq. A.9 in terms

of estimation errors gives
i_ =ei - KiHi#a - Kivi; i= 1,2.

Thus the a postemom cro_-covariaace matrix m

E[6t &_] = E[{et - K1HI&t - Ktvt}

x {_2 - K, tI2_2 - K2v_} r]

= E[(I - KtHt)_t&r(l- K_H2) r

- Ktvt_r(r - K2H2) r
T T

+Ktvtv_ K 2 ],

so that

k = (I- KtHt)fl(I - K2H2) r, (A.IO)

where /_ has been propagated from the lastupdate intervaland E[_t v_], E[vt &_], and E[vt v_] have been

assumed to be zero. Note that ifthe two filterswere processingidenticalmeasurements, E[vt v_] = E[vt vtT] =

V, and eq. A.10 would become

= (I- KtHt)R(I - K2H2) r + KtVK r.
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Bar-Shalom [5] has shown that R should be propagated in the same fashion as that used for each filter's ,auto-i
covariance matrix, i.e.. via eq. A.3, under the assumption that both filters use the same covanance propagation

method that accurately represents the propagation of the true state error covariance matrix. Also. because
the measurements are assumed to be uneorrelated, the correlations modeled by R arise only due to the filters

common system dynamics model. Therefore, R = 0 initially since no propagation has yet occurred. Hence.

[_(t) ='$(t,tj)R(t_)_r(t.tj) + S(t); R(to) = O. (A.II)

We now choose an optimal W by minimizing the trace of P., that is,

A
minJ = min tr P..

The following properties of the trace operator are useful in the subsequent derivation:

O-trAB r OtrBA r
-_ -- A,

OB OB

OtrBAB T
- 2BA, ifA issymmetric.

OB

Taking the partial derivative of J with respect to W yields

a _e= 2w(Pt + i,2- k- Rr)-2(p,-R).
ow

The optimal W is then found by setting _ to zero,

and solving for Wovt as follows:

w., = (Pl - k)(P_ + P2- k- t}r) -_

A great deal of simplification for P., given in eq. A.8, result8 ifeq. A.12 in used in eq. A.8:

/5, = PI--(Pl--/_)(PI+P2--/_--/_T)-T(PI--R) r

- (/)1- k)(Pl + P2 - k - kr)-l(A - ._T)

+ (P_ - R)(/'_ + i'2 - R- Rr)-_

× (i'1 + P2 - R - kr)-r(Pl - R)T.

(A.12)

Taking advantage of cancellations, we have

P. = Pl - (Pl - k)(Pl + P2- k - kr)-l(P, - kr),

which reduces to
P. = Pt - W_,,(Pl - kr). (A.13)

Hereafter,the algorithm specifiedby (in order)eqs. A.ll, A.10, A.12, A.4, and A.13 willbe referredto as a

fusionfilter.This algorithm isdepicted infigureA.2.



52 APPENDIX A ESTIM.-_TE FUSION FOR LU\.4R RE.\DEZVOf5

Propagation:

/_(tj ) = ,t,ftj, t__ _)R(tj _ _)¢(t_. tj __)r + S(tj )

Update:

Rj = (I- K1, Ht,)[{j(I- K2, H2,) T

w.,, = (P_, - R_)

x (P_, + P_,- Rj - Rr) -_
it., = (I- Wop,,)itl, + Wom it2,

A, = P_, - Wo_,,(Pz, - Rj) r

Updatet Prop. Up,late

t1 - t tj

Figure A.2. Algorithm for estimate fusion.

Interpretation of the Cross-Covariaace, R

Under the assumption ofcommon propagationmodels, the two Kalman filtershave threestatisticallyindependent

sourcesofinformation:measurements availabletothe firstfilter,measurements availabletothe second filter,and

estimates propagated from the lastmeasurement update [3].While the propagated estimates are conditioned

on differentsetsofmeasurements forthe two filters,both use the same equationsof motion and the same state

noise intensity.This gives riseto correlationswhich are modeled by R. Ifthese correlationsare ignored,the

fusionfilterwillunderestimate itscovariancematrix. Larger estimationerrors,and possiblyfilterdivergence,

may result.

A.4.2 Reducing Data Transmission Requirements

Figure A.3 shows the flow of information in the data fusionalgorithm presented above; three matrices and a

vectormust be transmitted from each Kalman filterto the fusionfilterwhenever a measurement isprocessed.

In thissection,some methods forachievingreductionsare discmmed.

Updating R using the A Prtori Covariance$

As shown by eq. A.10, to update the cro_-covariance, the Kalman gain and measurement geometry matrices

from the Kalman filters must be available to the fusion filter. However, recognizing that

P, = ( I - K,H,)Pi,

it follows that

PiPi -t = (I - K, Hi); i-" 1,2, (A.14)

and an alternate form for the cross-covariance update is

This update formula may be employed forsituationsinwhich the Kalman filterstransmit estimatesand covari-

ances only. However, sincetwo additionalmatrix inversionsare required,speed and numerical accuracy may be

compromised. Careful considerationmust be given to the issueof whether or not these disadvantagesoffsetthe

decrease in data transmissionrequirements fora particularapplication.
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Figure A.3. Information flow for estimate fusion.

The Optimal Scalar Gain Approximation

In some cases, even the covariances from the Kalman filters may not be readily available. An example is the

typical Global Positioning System (GPS) receiver which often provides as output only a state estimate and a

figure of memt. This figure of merit is typically derived from the trace of the GPS filter's covariance matrix or

some portion thereof. In this section, a formulation of the fusion filter will be given which utilizes a figure of

merit based on the covariancetraces.

Following the derivationof the optimal fusiongain,assume a form for the fusionstate update equation as

follows:

i° = (1 - w)_l + w_2.

Here w is restricted to be a scalar, and the subscript 'a' indicates an optimal combination using the scalar gain.

Now, rewriting this in terms of the estimation errom, the covariance matrix for the fused estimate is

= E[{_ - w,_ + w_2}{_ - _1 + w_2}r]

= (l - 2_ + _2)p_+ _2p_+ (_ _ _2)(1t+ RT).

As before,the gain isdetermined by minimizing the costfunction J A__trP¢ where

t_P, = (1- 2,,,+ ,,,_)tr#l + _ t,-& + 2(,,,- ,.,,_)tre.

Thus

and

implies that

a.J= (-2 + 2w)t,.P_+ 2,. trY'2+ (2 - 4_) tr,_,
Ow

t_i'l - trit

w,,p, = tr[_ l + trP2 - 2 tr[_"

An immediately apparent problem isthe calculationof trR when ,bland ib2are not available.However,

sincethe use ofa scalargain willalsointroduce inaccuracies,simply neglectingthe cross-covariancewhen using

the scalargain approximation may oftenbe appropriate.An alternativemay be to treatthe traceof the cross-

covarianceas a tuning parameter whose sizeischosen toforceestimatescalculatedusing the scalargain to more

accuratelytrackestimates determined optimally.
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Resetting a Kalman Filter via Estimate Fusion

In some applications, it may be possible or desirable to use the fusion algorithm to reset the Kalman filters. With
this method, th_ state estimate and covariance matrix resulting from eqs. A.4 and A. 13 are used to retnitiallze

both Kalman filters after each measurement has been processed at time t_. Thus

x, = (I- Wopt)xL + WoptX2, (A.15)

A = Pt-wo.,(Pt-Rr); i=l,2,

where "" indicates an estimate immediately posterior to a reset by the fusion algorithm. As a result, et = e2,
and

= E[+t +2]

= E[+,.+,.]= El+2
= Pt = P2. (A.I6)

However, it has been found that updating the cross-covariance as shown in eq. A.16 may in some cases read

to numerical difficulties. This issue is currently under investigation. A (suboptimal) alternative to eq. A.16 is
merely to let R = 0; then eq. A.11 becomes

R(t) = S(t).

Hence, propagation of the cross-covariance is not required. Now, the fusion filter can be integrated with the

Kalman filters by appending to the Kalman filters the additional update of eq. A.15. Hereafter, a Kalman filter

which is updated with estimates from another filter, via estimate fusion in the manner just described, will be

referred to as an reinitialized Kalman filter (RKF).

A.5 Application to Lunar Rendezvous

A.5.1 Description

Spacecraft rendezvous presents a scenario in which the estimate fusion algorithm might be beneficildly applied.

In this problem, accurate relative state and inertial state information are required for good performance, yet
both are not typically available from the same navigation processor. In the problem considered here, an active

spacecraft orbiting the Moon in a near-circular orbit is attempting to rendezvous with a pa_ive spacecraft in a

neighboring coplanar circular orbit. Initial uncertainties in the active vehicle's estimate of its own state corrupt

its initial intercept maneuver. It is desired to perform a midcour_ correction once an updated state estimate is

available from the vehicle's navigation system.

This navigation system is a distributed system consiJting of two Kalman filters. One filter, referred to as the

rendezvous filter, processes discrete measurements derived from a radar system of range and elevation angle to

the passive vehicle, p'r, and 0:T,, viz.,

= -  c(tj))r(rT(t ) - +

 r,(tj) -
OT, = arctan + V(OT),,

rr,(tj)- rc,(tj)

where

v(_r) _ _. N(O, V(pr) 6j_ ), v(ar) ' ".. N(O, V(ar),%_ ),

rc(tj) is the active vehicle (chaser) position, rT(t_) is the target vehicle position, and j = 1, 2.... This filter
assumes perfect knowledge of the target states; hence, it applies its update only to the chMer states.

The other-filter,referredto as the ground beacon filter,processesdiscretemeasurements of the range from

two beacons on the lunarsurface,PBt, and P82,. The beacon positionslieon the vehicles'common ground track

and have been previouslysurveyed to high precision.These measurements are derivedfrom the transittime of

a signalbroadcast by the beacon and are modeled as

psi, = _/(rm - _c(tj ))r(rm - fc(tj)) + v(pe,),,
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Figure A.4. Rendezvous maneuver, inertial perspective.

where i = 1,2;v_os,t, .-. N(0, V(os,)6_k);andj = 1,2,....
Both filters model the spacecraft dynamics using a Keplerian gravity model which is augmented by Gaussian

process noise. A somewhat different model, consisting of a Keplerian gravity model augmented by Gaussian

process noise and a bias term, is used for the environment dynamics. Thus the dynamics are given by

c, re(t)
ic(t) = -(tJ + olJj,,_,..,, - w;,

llrctUll

and
., r,r(t)

iT(t)= -(u+ - ";,

where 6p : 0 and w¢ --, N(0, W/,) for the filter models, and w¢ -_ N(0, WE) for the environment. The filters

are tuned by proper choice of W; to compensate for this imperfect knowledge of the gravity field.

It is expected that the rendezvous filter will produce accurate estimates of the relative position and velocity
between the two vehicles but inferior estimates of the inertial states of both vehicles. The occurrence of large

inertial state errors could lead to inaccurate maneuver targeting solutions as well as a buildup of relative state

errors during propagation intervah. To prevent the occurrence of such deleterious effects, it is desired to rectify
both Kalman filters through the use of a fusion algorithm which optimally combines the estimates of the ren-

dezvous and ground beacon filters. The optimal state estimate and error covariance will then be used to reset
both filters, thereby converting the filters into two identical RKFs. (In applying the estimate fusion algorithm,
filter 1 is taken to be the rendezvotm filter, and filter 2 to be the ground beacon filter.)

The passive vehicle's orbit hu a radius of two lunar radii. The active vehicle begins it8 maneuver /00 km
behind and 50 km below the pa_ive vehicle, as meuured in a curvilinear target-fixed coordinate frame. The

transfer is constrained to occur over a 30 degree arc, beginning at longitude 345 degrees and ending at longitude

15 degrees. The ground beacons, located at longitudes 330 degrees and 30 degrees, remain visible during the
entire maneuver. The selenographic frame to which the ground stations are fixed is assumed to be nonrotating,

an approximation due to the short length of the maneuver. The orbit transfer takes approximately 25 minutes,
and the midcouree correction maneuver occurs approximately halfway through the transfer near longitude 0

degrees• The initial and midcourse burns are computed using Hill's equations. The nominal maneuver is shown

in figures A.4 and A.5, which depict the maneuver from inertial and target-fixed viewpoints, respectively. The

design parameters used in tuning the filters are shown in table A.1. Note also that 6t_ = 10-*t_ and the RMS
acceleration noise for the environment is O.O01_/llrc(to)[[ 2 where to is the initial time.

A.5.2 Results

In figure A.6, a typical performance case of the rendezvous filter and the ground beacon filter is shown. The solid

Lines represent estimation errors and the dashed lines the corresponding root mean square uncertainties of these
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Table A.I. FilterDesisn Parameters
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errors as derived from the error covariance matrices. Shown here are radial and downtrack components of the

errors in the estimates of chaser vehicle inertial position. This figure may be compared with figure A.7, which

shows the estimation errors for the same quantities as calculated by an optimal and a suboptimal RKF. The

suboptimal RKF ignores the presence of correlations between the two Kalman filters. As indicated by the root

mean square bounds on the estimation errors, aiding the Kalman filters using either of the fusion reset algorithms

has brought significant performance improvements, most notably in the radial channel of the rendezvous filter

during the first half of the maneuver. The fairly large estimation errors present after the last measurement in

the downtrack channels of the RKFs are due to the presence of nonlinearities in the elevation angle measurement

which were neglected in computing the H matrix. Incorporation of angular measurements at such close range is

typically inhibited by filter designers. Note also that no noticeable degradation in accuracy occurs if correlations

are ignored by the RKF.
Relative state estimation errors, expressed in terms of coordinates in the direction parallel to the line-of-sight

between the two vehicles and its normal direction, are shown in figure A.8. The rendezvous filter is compared

to the optimal RKF. Since the target vehicle states are assumed to be perfectly known to these filters, trends
similar to those noted for the inertial state estimates are observable here. In particular, it is clear that the

stand-alone filter performs similarly to the RKF along the line-of-sight to the passive vehicle, but its accuracy

normal to the line-of-sight is heavily range-dependent. The RKF, which also contains the data from the ground
beacon filter, has enhanced ability to accurately estimate the relative state components which are normal to the

line-of-sight.
A great deal more insight into the proces.s of estimate fusion may be gained through visualization of the

optimal combination. To this end, projections onto the position plane of the hyperellipsoids corresponding to
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the filters' error covariance matrices are shown in figures A.9 - A.I2. The most striking feature of these plots

is the manner in which the ellipses corresponding to the RKFs are contained within the intersections of the

ellipses corresponding to the stand-alone filters. These plots also show how the suboptimal RKF, which ignores

the presence of the cross-covariance, underestimates the size of the error ellipse corresponding to the optimal
combination.

Note also that the rotation of the ellipse deriving from the ground beacon filter, indicated by the dashed

line, corresponds to the orbital motion of the chaser vehicle. The ellipse corresponding to the rendezvous filter

maintains a fairly constant orientation since the line-of-sight between the two vehicles is fairly constant, but as

the relative distance closes, the accuracy of the angular measurements in this filter exceeds the accuracy of its

range measurements such that its semimajor and semiminor axes become transposed. Note also the close match

in size and orientation of the ellipses corresponding to optimal and suboptimal RKFs.

Use of The .Scalar Gain Approximation

Next. the effectiveness of the scalar gain approximation is evaluated. In this implementation, the actual cross-
covariance is calculated, and its trace is used in computing the scalar gain. As shown in figure A.13, the errors

in inertial position estimates generated using the RKF with a scalar gain are generally of similar magnitude

to those of the nominal RKF, albeit slightly noisier. Although the RMS error bounds are larger when a scalar

gain is used, figure A.14 shows that the RM$ errors are still smaller for the RKF with scalar gain than for the
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stand-alone rendezvous filter. (Since perfect knowledge of the target states is assumed, the inertial errors and

relative errors represent the same quantities expre_med in different reference frames.)

Figures A.15 - A.18 indicate exactly how these error bounds behave in the position plane. The ellipse
associated with the estimates fused using a scalar gain no longer lies wholly within the intersection of the two

Kalman filters' error ellipses. However, the RKF's ellipse remains smaller than either of the ellipses associated
with the standalone filters, indicating that even this approximate method of estimate fusion yields better results

than either filter individually.

The performance of the RKF using a scalar gain can also be contrasted to the performance of an RKF which

ignored the cross-covariance. Recall that figures A.9 - A.12 show that the suboptimal RKF underestimates the
size of the covariance of the optimally combined estimate, whereas figures A.15 - A.18 show that the RKF which

uses a scalar gain overestimates the size of this covariance. The scalar gain approximation, therefore, provides
a more conservative estimate of its own accuracy than the optimal filter, whereas the RKF which ignores R is

less conservanve than the optimal filter.

A.6 Conclusions

A new derivation of an algorithm which fuses the outputs of two Kalman filters has been presented, This

algorithm has been shown to yield the optimal combination of the filters' estimates, in the sense that the trace
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of the covariance matrix of the optimal combination is minimized. Several modifications to the algorithm which

reduce data transmission requirements have also been presented, including a scalar gain formulation, a cross-

covariance update formula which employs only the two filters' autocovariances, and a form of the algorithm
which resets the two Kalman filters, leading to a modified Kalman filter, the reinitialized Kalman filter.

This work has been applied to the problem of lunar rendezvous, in which one Kalman filter processes relative

measurements and the other inertial measurements. Although some restrictive assumptions are made in the

analysis, including perfect knowledge of the target vehicle's state, promising results are obtained, demonstrating

the effectiveness of the optimal RKF as well as forms of the RKF which ignore the cross-covariance matrix and

use a scalar gain approximation.
Plots of the position planes of the error hyperellipsoids corresponding to the various filters' covariance ma-

trices show that the ellipse corresponding to the covariance of the optimal combination is contained within the

intersection of the two stand-alone Kalman filters' error ellipses. The scalar gain approximation overestimates

the size of this ellipse, while the RKF which ignores the cross-covariance underestimates the size.

A potential problem with the approach taken here becomes evident if errors in the target vehicle states are
introduced. The rendezvous filter will be able to accurately estimate the relative states but not the chaser's

inertial states. Unfortunately, when the accurate inertial information from the ground beacon filter is fused with

the accurate relative state information, degraded estimates of both result. This occum because the target states

are assumed to be perfect in the rendezvous filter, so the update resulting from the fusion algorithm is artificially

constrained to be applied entirely to the chaser vehicle inertial states. If both the target and chaser states could

be updated, then it seems likely that better results would be achieved. This would require the addition of target

state estimation to the rendezvous filter, making its state vector incompatible for fusion with the ground beacon

filter via the present method. This issue will be addre_ed in a forthcoming publication.
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Abstract

Techniques for optimally mixing the outputs from a pair of Kalman filters are presented, generalizing results

previously presented. These techniques are derived under the assumption that the designs of the filters are

fixed, and cannot be modified to support fusion requirements. A sufficient condition for using the optimally

fused estimates to periodically reinitialize the Kalman filters is presented as well. The results are applied to an

optimal spacecraft rendezvous problem, and simulated performance results indicate that use of the optimally

fused data leads to significantly improved robustness to initial target vehicle state errors. Two other applications

of estimate fusion methods to spacecraft rendezvous are also discussed: state vector differencing and redundancy
management.

B.1 Introduction

Historically, navigation systems have consisted of arrays of sensors which provided indirect or partial measure-

meats of position, velocity, and attitude. In such systems, these measurements are passed in raw or minimally

smoothed form to a centralized computing facility where they are typically processed by a statistical estimator

such as a Kalman filter. With the advent of modern microprocessors, it has become increasingly possible to

produce smart sensors, in which the state estimation process is moved inside the navigation sensor box. A

typical example is the user segment of the Global Positioning System (GPS), in which the receiver and nav-

igation software are usually integrated into a single receiver/processor. Decentralizing the navigation process

in this fashion has obvious advantages in terms of spreading the overall computational burden among parallel

processors, and as a consequence, increasing fault tolerance at the cost of requiring a solution to a potentially

complex integration problem.

Although a solution to the problem of optimally fusing the outputs from two or more local estimators was
presented at least as long ago as 1976 by Willner, et al. [1], this problem has received considerable attention

in the literature of roughly the last fifteen years, typically with a focus on minimizing computation and/or

communication requirements. One of the first of these recent works was the concise solution by Speyer [2] of
the discrete and continuous decentralized Linear Quadratic Gau_ian control problems. Thin work is notable

for compressing all the information communicated between local processors into a data vector which has only
the dimension of the control vector (if only the estimation problem is being solved, then the data vector has

the same dimension as the state vector). Speyer's work was generalized in the works of Willsky, et al. [3].
These workers presented necessary and sufficient conditions for estimating a global state from local estimates

of arbitrary dimension and expressed in arbitrary coordinate frames. Willsky, et al. predicted that their work

could be simplified. One such simplification can be found in the work of Alouani and Birdwell [4]. These authors

applied the results of their solution to the nonlinear estimation problem to the linear data fusion problem. In

all of the approaches just cited, a great deal of the data transmitted between the local processors is related

to correlations among the processors which arise due to common initial conditions and/or common process
noise. One solution which eliminates some of these requirements (at least in comparison to Speyer's work) is the

unification collating filter which has been described by Kerr [22]. In this work, only the information needed to

construct a globally optimal estimate at one, rather than all, of the local nodes is presented. Bierman [23] has

presented an approach in which the cro_-correlations are eliminated by comftr_eting the local processing such
that the information to be combined does not contain such correlations. More recently, Carlson has developed

an approach known as federated filtering which extends Bierman's approach [24]. Rather than a_igning all of

the common information to a single one of the local estimators, as in Bierman, Carlson constructs the local

estimators such that the common information is disjointly shared. In contrast, the works of Bar-Shalom ([5], [6],

[7]) have indicated how the cro_-correlations can be advantageously used in the data a_ociation problem, for
which it must be determined whether or not two estimates that are to be combined actually originate from the

same tracked object. Also, the problem in which some data sources are raw measurements and others are the

outputs of estimation schemes has been examined both in Willsky, et al. [3] and by Blackman [8]. In addition to

these theoretical works, numerous interesting implementations of decentralized filtering architectures have been

presented; the works of Wei and Schwarz [20] and Oshman and [sakow [25] are two recent examples.
In one of our previous works [26], a solution to the problem of fusing two Kalman filters operating in parallel

is presented in the context of spacecraft navigation. In the approach presented there, the outputs, or state
estimates, of the two filters are combined using weights based on the filters' covariance matrices as well as

the cross-covariance accounting for any correlation between the filters. This approach was motivated by the
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problem of retrofitting GPS onto the Space Shuttle because it was desired to avoid modifications to existing

GPS and Space Shuttle navigation filters. To be a candidate solution for this problem, a data fusion algorithm

must efficiently fuse the outputs of two local filters without requiring modifications inside the local filters, e.g.

by adjusting the local processors to eliminate cross-covariances. We called the approach taken estimate fuston
to distinguish it from other solution methods to the data fusion problem. This paper extends the approach

presented in our previous work by presenting the solution to the problem of fusing two filters with possibly
noncommon states as well as to the problem of how the fused estimate and its covariance can be used to

periodically reinitialize the Kalman filters and at what rate this reinitialization should take place. Results from

application of the estimate fusion technique to a spacecraft rendezvous scenario are shown and the technique
is found to combine in a complementary way the accuracies of a filter with relative state measurements and a

filter with inertial state measurements. Additionally, two other examples of estimate fusion's applicability to

spacecraft rendezvous problems are described, state vector differencing and redundancy management.

Notational Conventions

In the sequel, scalars are denoted by lower case letters set in italic type, e.g., z or a; matrices are denoted by

upper case letters set in italic type, e.g., A or F; and vectors are denoted by upper or lower case letters set in

bold italic type, e.g., y, B,D, or _. Random variables are denoted by letters set in sans serif type, e.g., x (a
random vector) or h (a random scalar), and realizations of random variables are denoted as ordinary vectors

and scalars. A normally distributed random variable r with mean/J and variance a is denoted by r ~ N(#, a).
The Dirac delta function is denoted by 6(t - r) and the Kroneeker delta by 6j_. A postemotn estimates, i.e.,

estimates immediately following a measurement update, are denoted by the accent '" and a prior1 estimates,

i.e., estimates immediately prior to the incorporation of a new measurement, are denoted by the accent '-'

B.2 Problem Statement

Consider the case in which two continuous/discrete extended Kalman filters ([17], [19]) are operating on a system

modeled by filter I as

il(t) =/l(xl(t)) +wl(t); wt(t) ~ N(O, Sl(t)6(t - r)),

and modeled by filter 2 as

Ylj =hl(x(t/))+vtj; vlj ~N(O, Rti6_k),

k2(t) = F2(x2(t)) + w2(t); w2(t) ~ N(O, S_(t)6(t - r)),

A

where filter 1 processes the diserete sequence of random measurements Yl(J) = {Ytl,Yt2,.. ,Yu} and filter

2 processes the measurements Y2(J) _ {Y2t,Y22,.-.,Y2j }. We allow that the filters' staten and measurements

may be divided into subeets common to both filters and subsets unique to each. Also, although not explicitly
indicated in this work, the common subsets may be exprensed in different coordinate frames, in which case the
transformation between thene frarnen mt=t be appended to the algorithms shown here. (As noted by Willsky,

et al. [3], there does not in fact have to be any physical relationship between the subsets viewed as common as

long as any assumptions about relationships in the mapping of the staten onto the measurements is preserved
in both filters' model realizations.) We assume the process noises wl(t) and w2(t), as well as the measurement

A £X

noises v_ and v2j, to be correlated where Sl_(t),5(t - r) E[wl(t) w:r(r)], and R12j6jk = E[vtjv2r] • However,
we require only that both St_(t) and Rt_j be nonnegative definite to allow that state or measurement subsets

unique to one filter could be uncorrelated with subsets unique to the other. Hereafter, the time index subscript

j will be suppressed as appropriate for clarity.
Given a sequence (j = 1, 2,...) of observations, Y,(j), which are realizations of the random variables Y,()),

each filter (i = 1,2) propagates its state between measurements via (t_ < t < t_+t)

_,(t) = t,(_,(t)),
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Figure B.1. Schematic of estimate fusion.

with z,(tj), the estimate from its previous update as its initial condition. The filters propagate their covariances

using
P,(t) = e_(t, tj)P,(ti)er(t, t,) + S.,(¢),

where

P,(t) _ E[{xi(t) - _dt)I{xi(t) - _(t)} r [ Y,(j)],

and

f>i(tj) _ E[{x,(tj) - _,(ti)}{xi(tj) - i_i(tj)} r I YdJ)].

Here,

_i(t,tj) -- F_(_si(t))@e(t,tj); 4ti(ti,tj) = I,

01,(z,(t))_,(,)Fi(_i(t))= Ozi(t)

and

SA,(t) = @,(t, T)S_(T)@T (t, r)dr.

Each filter updates its state estimate and state error covariance matrix at time tj using

i_(ti ) = it_(ti ) + K,i[v_ i -h,(iD_(tj))]

and

Pi(ti) = [I- Ki#Hii(it_)]Pi(ti),

where K,j is the Kalman gain for filter i at time tj,

K_j = P_(t_)H,r(i_,)[H_i(i_{)P_(tj)H,r(i_d + _,l -_,

and

Oh_(z_(t_oz,(tj) )) ]H,i(_ ) = _,(,,)"

It is assumed that the filters are stable and operating optimally with respect to their own measurements.

The problem at hand is to fuse the outputs of the two Kalman filters, as depicted in figure B.1, in an optimal
fashion.



B3 PROBLEM SOLUTION 4T

B.3 Problem Solution

Let xl and x2, the state vectors of filters 1 and 2. be partitioned according to those states which are common to

both filters and those states which are unique to each:

xz [x_', T T= x_] , x._= [x_', x_'] T,

where x_ are the states common to both filters, x, are the states unique to filter 1, and xC are the states unique
to filter 2.

B.3.1 The Optimal Combination

A form for the optimal combination, in which the filters' a postenon estimates are linearly mixed, is assumed

as follows:
_. = Wt_l + W_,

where the gain matrices, W,, i = 1,2, are to be determined, and the subscript '*' denotes a quantity resulting

from fusing the estimates. The gain matrices are to be chosen such that _, is an unbiased, minimum variance
estimator of the state of the system.

Since _I and _2 are Kalman filter estimates, these quantities may be a_umed to be expressible as

_, = [/- K,H,(_,)]_, + K,[H,(i,)x, + v,],

for i = I, 2. The a postenon estimation error is defined as

A
_,=x,-_, i= 1,2,*'

itfollowsthat

6. = x. - Wl(x_ - a_) - W_(x2- 8_).

By assuming that E[_i lY,]= 0 and that the filtersare operating optimally,the expectation of the fused

estimationerror,conditioned on the measurements of the filters,isfound to be

[']ElE[a.l(Yz Y2)]=E[( xn -Wx x(
' X_

x(

x(]) I (Yz,¥2)].-w2 [ x_

Choosing Wz and W2 to be complementary as follows:

wx= 0 i , w2= 0 0 ,
0 0 0 I

implies that E[_. [ (YL,Y2)] = 0.
Next, in pursuit of a minimum variance fusion of the estimates, the covariance of the fused estimate is found:

P. = E[$. 8.r I (Yz. Y2)]

+wzQ w r + W2OrW r, (B.1)

where Pt = "E[el &T I Yt], P2 = E[&_$2r I Y2], and (_ = E[$z@._ [ (Yx,Y,)]. The latter, Q, represents the
cross-covariance of filter 1 and filter 2 and is updated via

Q = (I - KtHL(_ez))O,(I - h'2H2(_2)) r + KzRz2 h'r,

where (_ has been propagated from the last update interval [26]. The issue of how 0 is propagated will be visited

in the sequel. Note that in general, Q is neither symmetric nor square.
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Now, PI, P2, and Q are partitioned into blocks corresponding to common and unique states,

O = [ 0.
k

Then

(t - w_)P_dt - w_) r (t - w_)Pl_, 0 ]P_,(t - w_)r P,,, 0
0 0 0

B.2)

Wt Q Wr = O._wg o 0,, ,
0 0 0

B3)

w_&wT = (w_o w[7

= [w_o_(to-W_)rw_or_°]o o ,

and

= 0 0 .

Substitutingeqs. B.2 - B.5 intoeq. B.I yields

P_. = (z - wo P,_ (t - w_)r

+(z - w_) 0_ w[

+w_ 0_'_(I - w_)r + w_ h. w[,

p_. = (t - w_)[_,_,+ w_o_,

P_. = (I- w,)¢,_ + w_P_(,

co, = e_. = 0,_. and
P_¢° =

P,m. = Ptn_,

(B.4)

(B.S)

where

p.= p_. _,,. e,,.
_'[,. _'L &,.

Interestingly,even though only tho_ statescommon to both filtersare fused,the correlationsbetween these

statesand those which are unique to both filtersare updated.

To minimize the variance,an optimal W_ ischosen to minimize the traceof Po. Note that

t,-P. = t,-[(_ - w_) P_ (t - w_) r

+(_ - w_)0_ w[ + w_ 0_ (t- w_)r

+w_ ['_. w[ + _'_.. + _'_.1,

P. trP..i,e., the off-diagonal blocks of do not contribute to Therefore, since _ = 0 and _ = O,
the

problem of determining the optimal weighting matrix, W_..,, is equivalent to the problem in which the filters
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have identical process models, which was solved in the authors' previous work [26] The optimal gain. V,'e,,, is

determined by setting _ to zero, yielding,

w+.,, = (P_++- Q_+)(P_+++ &++- Q++- Q[_)-_.

Use of the optimal gain simplifies the expression for P_-_., viz.,

P,q. = Pt,q - w,_.,, ( PI_ - Q_',_).

B.3.2 Propagation of the Cross-Covariance

The cross-covariances explicitly contain the shared memory of the two filters, which originates from common

initial conditions and/or common process noise models. The shared memory is maintained in the fusion algo-

rithm's propagation stage. For disjoint measurement sets, it cannot be created through the updates, but only

modified. Although we assume that the initial conditions and process noise models associated with the states

unique to one filter are uncorrelated with those of the other filter, we allow that states unique to a given filter
may be correlated (through initial conditions or process noise models) with the states common to both filters.

allowing for a significant degree of information sharing between the filters.
As with the extended Kalman filter covariance matrices, propagation of the cross-covariances may be ex-

pressed in the notation of a Riccati equation or via state transition matrices. Since the latter is typically viewed

as computationally superior (of. [27]), we report this form only. The derivation closely parallels that of the
Kalman filter's covariance propagation (e.g. [14]), so we only sketch certain unique aspects. By definition,

Q(tj) _ E[_x(ty)_2(ty )T I (Yt(j - l), Y2(J - 1))]

= E[{xt(tj) - _l(tj)}{x2(tj) - a_2(t.i)}T]- (B.6)

By expressing the continuous-time process models as equivalent discrete-time difference equations, eq. B.6 may

be expanded and the expectation carried out so that we arrive at

(_(h ) = ct(h, ti-,)(_(ti-t)¢r(ti, t,_t) + sax2(t_),

in which

and

],'TSale(t) = fit, r)St2(r_r(t, +-)at,
j-

=,t(.,.(,)'"(') )]
It is assumed that E[wl_(t) wT((t) ] = O, since these noi_ terms are applied to the states unique to each filter.
Then

[ St,,,(t) Sm,¢(t) ]St_(t) = St2.t(t) 0 "

This matrix, like the filter proce_ noise spectral density matrices St and $2, is determined as part of the

navigation system tuning protein.

B.3.3 Reinitializing the Kalman Filters

It is possible" to use the fused estimate and its covariance to periodically reinitialize the Kalman filters via a

feedback configuration, as shown in figure B.2. In this procedure, the main jobs of the block labeled Fusion in

figure B.2 are to propagate the cross-covariance matrix between measurement updates and to update it each
time either of the filters performs an update. Then, at some frequency less than or equal to the slower filter's

update frequency, a fusion of the filters' state estimates and covariances is performed, with the filters restarted

with the fused state and covariance as initial conditions.
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Figure B.2. Schematic of estimate fusionfeedback.

When such a reinitializationisperformed, the cross-covariancemust alsobe reinitialized.Denote quantities

posteriorto such a reinitializationwith the accent '"'Then, the estimate and covarianceof filteri are i_ = _.

and P_ =/_., and

(_ = E[tl_ [ (Y1,Y_)] = E[_.t. r I (gl,Ya)]

= P.= PI = P2.

For the case of common process models and common filter update rates, @t = @2 and St2 = Sl = $2, so that

0 = ¢10_ + Sal2
= @_Pl@l + Sal = '#'2P2@2+ 5,,2

= Pl =P2,

i.e., no propagation of the cross-covariance is required.
Care must be taken, however, to ensure th&t the filters' common states are statistically independent before

reinitialization. To see this, consider the difference between the filters' state estimates, defined as

= Ill(- _2(,

and the differencecovariancedefinedas

e_( _ El(e,(- e2()(e_- e2()T l(Y_,Y2)]

= e_u+ P2u- Q(_- Q_'_.

Just aftera reinitiaiL1&tion,d( = 0 and 16_( = 0. The filtersmust be allowed to operate long enough between

reinitializationsfor ,_ to become invertibleso that W_o,, = (/hi((--0(()_b_ can be computed. Ifi&_( isnot

invertible,then there exist_some a which has at leastone non-zero component such that

aT p_,_a = 0 _ ar_( = 0

i.e., the components of a( are linearly dependent [29]. In the section B.6, it is shown that a sufficient condition for

/b_ to be invertible when the filters share a common process model is that a sufficient number of measurements
(j = 1, 2 .... , m), denoted by #, have been processed by at least one of the filters such that its observability

grammian, given by

O,n = Z q_(tj, t,,_)r HT n;1H_q_(tj, t,,_),
1=1
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has full rank. Although Pa_ may still be invertible if fewer measurements are processed, if/_ measurements are

processed between reinitializations, invertibility of Pa_ is guaranteed. Note that the appearance of this singu-

larity is solely a consequence of reinitializing the filters with exactly the same initial conditions and therefore.

it does not appear if the feedback scheme is not used. It has been suggested that maintaining the filters and
cross-covariances in information form could possibly avoid this singularity. We concur that this is an interesting

research topic, but for present purposes it would violate the condition of our approach that the existing sub-filters
not be modified.

B.3.4 Data Transmission Requirements

The reader interested in a discussion of the computation and transmission requirements of the estimate fusion

algorithm is referred to reference [26]. In brief, for the limited case in which the filters have common process

models, complete state observability from a single update cycle, and do not process any common measurements,

the estimate fusion feedback algorithm can be implemented in such a way as to only require transmission of

states and covariances, as long the fusion processor has access to both prior and posterior covariance matrices. A

promising alternative is the optimal scalar gain formulation derived in [26] in which the estimates are fused using

a scalar weighting factor computed using only the traces of the covariances and cro_-covariance. In fact as in

the application considered in the sequel, for cases for which there are frequent and accurate measurements, the

cross-covariance may often be suboptimally ignored without significantly affecting performance. In such cases,

a great deal of the computation and transmission requirements of the estimate fusion algorithm are relieved.
In other cases, ad-hoc approaches to modeling the effect of the cro_-covaziance, such as that suggested by

Blackman [8], may be employed successfully.

B.4 Applications to Spacecraft Rendezvous

B.4.1 Fusion of Inertial and Relative State Estimates

The problem of lunar rendezvous was studied in reference [28]. It was shown that estimate fusion techniques could

be used to improve the performance of a relative navigation filter by fusing its states with the state estimates
from an inertial Kalman filter. However, due to the limitation of the estimate fusion algorithm presented in

reference [26] to common state dimensionahty, a perfect target assumption had to be made so that both filters
only estimated the chaser vehicle states. It was mentioned that if significant target errors were present, degraded

state estimation and possibly filter divergence could occur. With the new results presented in this appendix,

this problem can now be addressed.
A brief description of the scenario is presented. The reader m referred to reference [26] for details. The navi-

gation system is a distributed system consisting of two Kalman filters. One filter, referred to as the rendezvous
filter, processes discrete measurements derived from a radar system of range and elevation angle to the target

vehicle, PT, and 0T,, viz.,

where

_j = _/(_'T(t_) - _'C(ti))r(_'r(ti) -- e'C(t_)) + _,_,_.),.

_T,(ti)- _c,(ti)
OTi"- arctanrT,(tj) rC,_(ti) + v($v)"

v(_),...N(O,YC,,T_6:k),V_,T),""N(O,V<,T),6p,),

rc(tj) isthe activevehicle(chaser)position,rr(tj) isthe targetvehicleposition,and j = I,2.....Note that

updates from these measurements are used to estimate both the targetand chaser vehicleinertialstates.

The other filter,referredto as the the ground beacon filter,processesdiscretemeasurements of the range

from two beacons on the lunar surface,Pro, and Ps2,. The beacon positionslieon the vehicles'common ground

track and have been previouslysurveyed to high precision.These measurements are derived from the transit

time of a signal broadcast by the beacon and are modeled as

PB,, =- ¢(rBi -- i'c(t: ))r(rBi -- f'c(tl )) + V(Pe,),'
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where i = 1,2, v(os,). N(0, k}ps. ) 6ik), and j = 1.2 .....
Both filters model the spacecraft _ynamics using a Keplerian gravity model which is augmented by stochastic

process noise. A somewhat different model is used for the environment dynamics which consists of a Keplerian

gravity model, augmented by stochastic process noise and a bias term. Thus the dynamics are given by

v.c(t) = -(_, + @)_c(t)/llrc(t)413 - w_,

and

1;r(t) = --(# + 6_,)rr(t)/llrr(t)ll 3 - w_,

where 6# = 0 and w_ ~ N(0, Wf6(t- r)) for the filter models and w_ ~ N(0, W¢_(t - r)) for the environment.

The filters compensate for their imperfect knowledge of the gravity field by choosing W_ conservatively.

The passive vehicle's orbit has a radius of two lunar radii. The active vehicle begins its maneuver 100 km

behind and 50 km below the passive vehicle, as measured in a curvilinear target-fixed coordinate frame. The

transfer is constrained to occur over a 30 degree arc, beginning at longitude 345 degrees and ending at longitude 15

degrees. The ground beacons are located at longitudes 330 degrees and 30 degrees and remain visible during the
entire maneuver. The selenographic frame to which the ground stations are fixed is assumed to be nonrotating,

an approximation due to the short length of the maneuver. The orbit transfer takes approximately 25 minutes,
and the midcourse correction maneuver occurs approximately halfway through the transfer, near longitude 0

degrees. The initial and midcourse burns are computed using Itill's equations. The nominal maneuver is shown

in figure B.3, which depicts the maneuver from a target-fixed viewpoint. The design parameters used in tuning
the filters are shown in table B.i. Note also that 6t, = 10-4/_ and the RMS acceleration noise for the environment

is O.O01MIIrc(to)ll _.

,o

.iS t _ _ e__Y6_ .............

Ji

"801 -10 -20 -,10 ,40 40 40 .TO 40 40 .1_

_J_l_mr _rx_i_ m

Figure B.3. Relative motion.

An indicationof the performance ofstand-aloneversionsof the filterscan be gleaned from figureB.4, which

presentssimulated data. The filters'performance inestimatingthe chaservehicleinertialpositionstatesisshown.

The upper-leftsubplot shows the unaided ground beacon filter'sestimationerrorsfor the radialcomponent of

the chaservehicleinertialp<mitionand the upper-rightsubplotshows thisfilter'sperformance forthe downtrack

component. Similarly,the two lower subplots show the unaided rendezvous filter'sestimation errorsfor the

radialand downtrack component of the chaser vehicle'sinertialposition,respectively.In thisand subsequent

plots,solidtracesrepresentestimationerrorsand dashed tracesrepresentthe corresponding root mean square

uncertainties'oftheseerrorsas derivedfrom the errorcovariancematrices.Note that the errorcovarianceof the

rendezvous filtergrows quite large.

When these same filtersare reinitializedevery other measurement pass using the estimate fusionfeedback

scheme, the largeuncertaintyinthe chaservehicle'sinertialpositionexhibitedby the rendezvous filterisremoved

by the informationprovided by the ground beacon filter,asseen infigureB.5. Here the performance ofan optimal

configurationisshown inthe two upper subplots,with errorsinthe radialand downtrack components ofinertial

positionshown in the leftand rightsubplots,respectively.In the two lower subplots,the performance of a
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Table B.l. Filter Design Parameters

Init. RMS Pos. Err., m
lnit. RMS Vel. Err., m/sec °
RMS Accel. Noise, m/sec _ b
RMS Range Meas. Err., m
RMS Ang. Me_. Err., deg
Meas. Interval, sec

_e_dez-

uous

filter

Ground

beacon
filter

100 100
2 2

0.1 0.1
30 30

0.15
60 60

a [.nitial errors tmcorrelated; applied equally in all channels

bNoise anstmaed to be uncorrelated, and equal in all channels
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Figure B.4. Stand-alone Kalman filters' estimation errors for inertial chaser vehicle position.

suboptimal estimate fusion feedback scheme in which the correlations between the two filters, modeled by the

cross-covariance matrix, are ignored by asauming that Q = O. In these subplots aa well, errors in the radial and

downtrack components of the .chuer vehicle inertial position are shown in the left and right subplots, respectively.

Finally, figure B.6 shows the simulated relative state estimation performance of the reinitialized and unaided
rendezvous filters in the upper and lower subplots, respectively. In this figure, relative poaition errors along the

line-of-sight from the chaaer to the target are shown on the left, while errors in relative position normal to the

line-of-sight are shown on the right. From this figure we see that the reinitialized filter approaches the relative
state accuracy of the unaided filter only on update cycles in which estimate fusion is not performed. Apparently,

the uncertainties in the ground beacon filter's state estimates marginally corrupt the relative state estimates,

although with the benefit of substantially improving inertial state estimation performance, as seen from the

comparison of figures B.4 and B.5.

One of the benefits of having good inertial state estimates in a rendezvous scenario is demonstrated in the

next sequence of plots in which initial errors having ten times the standard deviation expected by the filters were
introduced into the target vehicle inertial states as a stress case. In figures B.7 and B.8, the inertial position

performance of the unaided filters is compared to the two versions of the reinitialized filter (with and without
cross-covariance modeling). As seen in figure B.7, the unaided rendezvous filter's performance in estimating the
chaser vehicle inertial states for this case is poor. The arrangement of subplots in this figure is the same as that

of figure B.4, with the errors of the unaided ground beacon filter on the top, those of the unaided rendezvous
filter on the bottom, and radial and downtrack components of the chaser vehicle inertial position errors on the
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Figure B.6. Estimation errors for relative position.

left and right, respectively. By contrast, the reinitialized rendezvous filter, which makes use of very accurate
inertial state estimates from the ground beacon filter, is not significantly degraded by the stress case in its ability

to estimate the chaser vehicle states, ms shown by figure B.8. The arrangement of subplots in this figure is the

same as that of figure B.5, with the errors of the optimal reinitialized rendezvous filter on the top, those of the

suboptimal reinitialised rendezvous filter on the bottom, and radial and downtrack components of the chaser

vehicle inertial position errors on the left and right, respectively.
The relative state estimation errors of the reinitialized and stand-alone rendezvous filters for the stress case

are shown in the top and bottom subplots of figure B.9, respectively. Here, as in figure B.6, relative position

errors along the line-of-sight from the chmmr to the target are shown on the left, while errors in relative position
normal to the line-of-sight are shown on the right. As in the nominal cue, it can be seen relative state estimates

of the reinitialized rendezvous filter are marginally less accurate than those of the stand-alone rendezvous filter.

but in light of the stand-alone filter's poor inertial state estimation, the marginal improvement in relative state

accuracy seems dubious.

B.4.2 Relative Navigation By State Vector Differencing

Another approach to the relative navigation problem presented above can be taken if both vehicles are equipped

with filters providing inertial state estimates and no relative sensor is used. [f in the lunar rendezvous example
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presented above both vehiclesare equipped with sensorswhich meuure the range to the same ground beacons

and thisrange data can be transmitted toa common location,itcan be processedin a Kalman filtertoestimate

the relativestate. Alternatively,ifeach vehiclewere equipped with a ground beacon filterwhich allowed it

to estimate itsown inertiaistate,then these state estimates could be differencedto determine the relative

state.This approach, known as statevectordifferencing,can be criticizedfornot providing any measure ofthe

relativestateuncertainty,or for providinginaccuratemeasures of the uncertainty.However, the estimate fusion

techniquespresented inthispaper provide a means fora_idreesingthisissue.

In thiscase,the two filtersdo not share any statevectorelements in common; however, the processmodels

for the two distinctstatesmay in factbe identical,or at leastquitesimilarto one another, sinceboth vehicles

see the same environment. Letting _ denote the chaser vehicleinertialstatesand ( denote the target vehicle

inertialstates,the optimally fused state,io, issimply

_. _--[ _'"+ _ ]'

where xl isthe state vector of a filterestimating only inertialstateson board the chaser vehicle,and _ is

the state vector of a filterestimating only inertialstateson board the target vehicle.The optimally fused a
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Figure B.9. Estimation errors for relative position in the presence of significant initial errors in target vehicle

states.

poster:or: state error covariance is simply

where /hi and /_ are the a poster{ori state error covariances of filters 1 and 2, respectively, and Qn¢ i_ the a

postenon cross-covariance, given by

O,¢(tk) = (I - Ki.Hl.)(_¢(t.)(l - K2.H_k) r

Q,¢ (tD = ¢'l(t_, t___)Q,¢(t__l)_,2(t_, tt-_) r

¢,,¢(t°)=o.

Note that due to the possiblysimilaroreven identicalproce_ models forthe unique stateelements,S4,¢ _ O. It

isthisinformationin the crosa-covariancewhich isoftenignoredinother approaches to statevectordifferencing.

The optimal estimate of the relativestateis

_l,ls= _I,,- _,¢ = _I[- _i_.

The error covariance associatedwith the optimal relativestateis

P._ = E[(l._ - i.=)(_._ - i._) r I (Y,, Y_)]

= + - -

This matrix is a co_t meuu_ of the relative state uncertainty for the state vector differencing problem.

B.4.3 Fusion of Redundant Navigation Systems

It is a long standing requirement that critical systems on spacecraft have redundant backups in case of failure.

During nominal operations, both primary and redundant navigation sensors often ate operated in parallel,

presenting the problem of redundancy management. Various schemes for accomplishing this task have evolved,

many of which, though simple and expedient, are suboptimal, such as averaging or midvalue selection. Data

fusion techniques, though placing a greater computational burden on the navigation system, can avoid some

potential problems of these suboptimal approaches. For cases in which it is not possible or cost-effective to

modify the local processors, the estimate fusion technique presented in this work is a reasonable approach to

redundancy management.
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Since in this case the filters are identical, the estimate fusion algorithm as presented in reference 126! ¢:an

be used directly. Note that the form of the cross-covariance update which includes the assumptton of identical

measurements, i.e.,

Q = (l- KIHt(Xl))O,([- [(2H2(i2)) r + KtRKf

= PlJOt-tO/_2-1P2 + KtRKf,

must be employed, necessitating the transfer of the Kalman gain matrices, Kt and K2, in addition to the other

parameters already required for the estimate fusion process. As long as the filters are operating identically, the

estimate fusion provides estimates which are no better than any one of the filters operating alone. In fact, the

filters will probably never operate identically and the estimate fusion algorithm will be able to optimally weight

their outputs according to each filter's own estimate of its accuracy. If a sensor failure which is detected by

the system's filter occurs in one of the redundant systems so the filter stops incorporating new measurement
information into its state and covariance matrix, then process noise in the filter's model will tend to make the

covariance grow. The estimates from this filter will then be downweighted by the estimate fusion in favor of
the more accurate redundant filter. Note that in this application, reinitializing the Kalman filters with estimate

fusion feedback is not appropriate.

A significant problem with this approach to redundancy management is that very often the Kalman filter

itself can fail, regardless of the health of the sensors, if its covariance gets too small, leading to divergence of
the estimation errors when new information falls to be incorporated. This tendency is typically mitigated by

appropriate tuning of the process and measurement noise intensities as well as by various forms of residual

screening. In using residual screening filter designers are motivated by the conviction that by temporarily

stopping the filter from incorporating new measurements its covariance matrix should begin to grow (due to

the presence of additive process noise) and eventually become large enough to allow incorporation of new

measurements once again, allowing the filter to return to stable operation. If this heuristic holds, then estimate
fusion may initially result in degraded estimates while the divergent filter's covariance is too small, but will

eventually reflect the more accurate performance of the nominally operating filter.

The estimate fusion technique can, however, provide an _iditional level of screening to protect against failures

of the filters' residual edit tests. An edit test at the state vector level can be performed as follows: compare the

difference vector dt_ - zt - z2 to the difference covariance/_12 -/_1 + P2 - {_ - 0T; if the difference vector
is smaller in some sense than the difference covariance (po_ibly multiplied by some factor), then allow zt and

z2 to be fused; if not, then do not perform a fusion of the states. The way in which the difference vector is

compared to the difference covariance is straightforward. To perform an n sigma edit test on the state vector

difference between estimates from filters 1 and 2, calculate dt2r/_[l_ and check to see whether it is less than

or equal to n 2. If it is, perform the data fusion.

By monitoring the filters' own residual screening results, it should be possible to determine which of the two
filters has failed and exclude it from further consideration for data fusion. Alternatively, if there is a third source

of information, such as a third filter, or a fused state which has been propagated since the last fusion interval,

this state can be compared to zt and z2 in the same way in order to determine which of the latter two should

not be used. Further study of such i_ues is merited.

B.5 Estimate Fusion Feedback Observability

In this section, reference to common and noncommon elements of the filter state vectors, previously denoted by

the subscripts _, q, _', will be omitted for clarity. No loss of generality results from this omission since only the

common elements are directly combined in the estimate fusion and, hence, relevant in the present context. Thus

partial derivatives making up the matrices ¢, H, etc. should be understood to be taken with respect to only the
common state vector elements.

The situation being considered is that of two filters sharing a common process model, denoted by the

subscripts 1 and 2, which have previously had their estimates and covariances fused and the fused estimate
and covariance used to reinitialize the filters. As a result, the filters are maximally correlated. If a subsequent

estimate fusion is to be performed, it has been shown that Pd - Pt + P2 - Q - QT must be inverted. Two useful

facts will be required to investigate the problem of inverting this matrix. First, for a completely observable

system with discrete measurements, j = 1,2 ..... m, there exists a minimum number of measurements. /a. such
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that for

@m = _ ¢(tj, t,,_)rHrR71H_¢(t:, t,,_),

i=1

then m _ # implies ar@a > 0 for some a which has at least one non-zero component [30]. Next, the Kalman

filter sequential covariance update (at time t,_), given by

Pm= P,,_ - [_mHr(HmP, nH r + R.m)-tH,nP,_,

can be rewritten using the matrix inversion lemma:

[_+ = (p_t + H_R_IH,n)-L

Equivalently, a batch update formulation for the covariance in which a series of previously stored measurements

are incorporated all at once at periodic intervals is as follows:

m

Pm=¢P;' + E _Tn]'n;'M,_)-',
j=!

where _j should be interpretedas the statetransitionmatrix mapping from the time of the jth measurement

to the (current)time at which the update isto be performed, i.e.@(t#,tin).

The solutionto the problem at hand isgiven by the followingtheorem.

Theorem Either of the conditions mt > Pl or m2 >_ _2 is 8u+g_icient for the ezistence o/ P_t.

Proof: Since the filters have common proce_ models, if their covariances were propagated from the time of

the previous estimate fusion without incorporating any new measurement8 until just prior to the next estimate
fusion interval, then Pt - P_ = 0 -- P., and the components of ,b4 - ,bt + A - Q - O r could be written in

terms of/_. using the matrix inversion lemma as follows:

fit L

P, = (p:' + _ +Tn,_RT,'H,,_)-' =(P:' + e,)-'
.#ffil
¢n 3

h = ¢[':' + _+Tn_5'n,,++)-' =(P:' + e,)-'
j----I

O = (P:_ + o_)-_P:_(P: _+ e2) -_

Thus it can be seen that

p_ = (p.L + Od-_O2(p._ + O2)-L
+(P:_ + O2)-_O_(P: L+ O_)-_

Since the filters are &mumed to be st_d_le, (j5.--1 + _), i = 1, 2 are full rank, positive definite matrices. Further,

@t or @_ are at least positive semi-definite, so that the rank of jb_ can be no le_ than the rank of the greater
of (P:_ + e,)-'e_(P: _ + e_) -_ and (P:_ + e_)-'e_(P:_ + e_) -t. Since (pt + e,), i = 1,2 are full rank,

then from Sylvester'- inequality

d(P:' + e_)-'e_(p:'+ e_)-q < ,.,d_(P:"+ e_)-',
p(e_),o(P:' +_)-'}
= _(o;)

_[(P._ + o_)-_e_(P: _ + o_) -_] <_,_,n(_(P:_ + o_) -_,
o(O_),_(P:"_+o_) -_}

= _(e_)

where p(.)representsrank(.). Hence, itcan be seen that p(P_) >_maz{p(Ot),p(O_)}. Ifmt >_pt or m_ >_p_,

then @l or @2 have fullrank, respectively.Since @_, @_, and P_ share the same dimension, then m_ >_/_tor

rn_ > p2 issufficientfor/_ to have fullrank, and hence be invertible.QED
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